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Misconceptions about core linguistic concepts like mutable variables, mutable compound data, and their
interaction with scope and higher-order functions seem to be widespread. But how do we detect them, given
that experts have blind spots and may not realize the myriad ways in which students can misunderstand
programs? Furthermore, once identified, what can we do to correct them?

In this paper, we present a curated list of misconceptions, and an instrument to detect them. These are
distilled from student work over several years and match and extend prior research. We also present an
automated, self-guided tutoring system. The tutor builds on strategies in the education literature and is
explicitly designed around identifying and correcting misconceptions.

We have tested the tutor in multiple settings. Our data consistently show that (a) the misconceptions we
tackle are widespread, and (b) the tutor appears to improve understanding.
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1 INTRODUCTION

A large number of widely used modern programming languages share a common semantic basis:

• lexical scope
• nested scope
• eager evaluation
• sequential evaluation (per “thread”)
• mutable first-order variables
• mutable first-class structures (objects, vectors, etc.)
• higher-order functions that close over bindings
• automated memory management (e.g., garbage collection)

This semantic core can be seen in languages from “object-oriented” languages like C# and Java, to
“scripting” languages like JavaScript, Python, and Ruby, to “functional” languages like the ML and
Lisp families. Of course, there are sometimes restrictions (e.g., Java has restrictions on closures)
and extensions (such as the documented semantic oddities of JavaScript and Python [Bernhardt
2012; Guha et al. 2010; Politz et al. 2012, 2013]). Still, this semantic core bridges many syntaxes,
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and understanding it helps when transferring knowledge from old languages to new ones. In
recognition of this deep commonality, in this paper we choose to call this the Standard Model of

Languages (SMoL).
Unfortunately, this combination of features appears to also be non-trivial for programmers

to understand. Consider the following scenario: to create a calculator, we have to construct a
callback that can be attached to each button. The following Python program seems to achieve the
construction of these callbacks and the act of pushing the buttons in order:

button_list = []

for i in range (10):

button = lambda: print(i)

button_list.append(button)

for button in button_list:

button ()

That is, a user would expect to see 0 through 9. In fact, however, it prints 9 ten times.
As the related work section (Section 10) describes, multiple researchers, in different countries and

different kinds of post-secondary educational contexts, have studied how students fare with scope
and state. They consistently find that even advanced students have difficulty with such programs
and even programs simpler than this.

In fact, these problems are not at all limited to students. This specific looping problem even trips
up industrial programmers. The C# language changed to produce 0 through 9 [Lippert 2009]. It
is now also the focus of a language design change in Go [Chase and Cox 2023] for a new kind of
looping construct [Cox 2023]. It continues to trip up programmers (e.g., [sharvey 2022]) despite
being documented as a “gotcha” in Python [Reitz and Schlusser 2016].
Most of the time, however, these misunderstandings do not lead to language design changes.

Nor are changes necessarily desirable: the SMoL feature set has presumably evolved because it is
convenient for writing non-trivial programs (e.g., mutable structures) without being too unwieldy
(e.g., no dynamic scope). Furthermore, having a good mental model of these features is essential to
understand ownership [Clarke et al. 1998], manage parallelism, and more. Thus, we still need to
train students and other programmers on the semantic features and their interactions in SMoL.

In response, we have (a) run a multi-year, multi-phase study to identify these misunderstandings
while trying to work around the blind spots of experts (and also drawing on prior work), and
(b) constructed the SMoL Tutor, an interactive tutor to address these misunderstandings. The
SMoL Tutor is not a programming tutor; rather, it assumes the user has some basic facility with
programming (i.e., that they are already familiar with concepts like vectors, mutation, and higher-
order functions). It is built around SMoL’s features and their interactions, and draws on cognitive
and educational psychology concepts to expressly identify and correct misconceptions.
Concretely, we make the following contributions:

(1) We provide a collection of brief programs for detecting misconceptions about the features of
SMoL and their interaction. These programs are short and most are readily translatable to a
wide variety of programming languages that share the SMoL characteristics.

(2) We show that multiple populations have problems with these programs.
(3) We present a list of curated misconceptions generated after multiple rounds of analysis.
(4) We implement these misconceptions as interpreters, which find weaknesses in our manual

analysis and hold potential for generative use in the future.
(5) We present a tutoring system that measurably corrects these misconceptions.
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Table 1. Primitive operators of SMoL.

Operators Meaning

+ - * / Arithmetic Operators
< > <= >= Number comparison

mvec Create a (mutable) vector (a.k.a. array)
vec-ref Look up a vector element

vec-set! Replace a vector element
vec-len Get the length of a vector
mpair Create a 2-element (mutable) vector

left right Look up the first/second element of a 2-element vector
set-left! set-right! Replace the first/second element of a 2-element vector

eq? Equality

A Note on Terminology. We use the term “behavior” to refer to the meaning of programs in
terms of the answers they produce. A more standard term for this would, of course, be “semantics”.
However, the term “semantics tutor” might mislead some readers into thinking it teaches people to
read or write a formal semantics, e.g., an introduction to “Greek” notation. Because that is not the
kind of tutor we are describing, to avoid confusion, we use the term “behavior” instead.

2 BACKGROUND: TUTORING SYSTEMS AND PEDAGOGIC TECHNIQUES

There is an extensive body of literature on tutoring systems ([VanLehn 2006] is a quality survey),
and indeed whole conferences are dedicated to them. We draw on this literature. In particular, it is
common in the literature to talk about a “two-loop” architecture [VanLehn 2006] where the outer
loop iterates through “tasks” (i.e., educational activities) and the inner loop iterates through UI
events within a task. We follow the same structure in our tutor (Section 6.1).
Many tutoring systems focus on teaching programming (such as the well-known and heavily

studied LISP Tutor [Anderson and Reiser 1985]), and in the process undoubtedly address some
program behavior misconceptions. Our SMoL Tutor differs in a notable way: it does not try to teach
programming per se. Instead, it assumes a basic programming background and focuses entirely on
program behavior misconceptions and correcting them. We are not aware of a tutoring system (in
computer science) that has this specific design.

The SMoL Tutor is firmly grounded in one technique from cognitive and educational psychology.
The fundamental problem is: how do you tackle a misconception? One approach is to present “only
the right answer”, for fear that discussing the wrong conception might actually reinforce it. Instead,
there is a body of literature starting from [Posner et al. 1982] that presents a theory of conceptual
change, at whose heart is the refutation text. A refutation text tackles the misconception directly,
discussing and providing a refutation for the incorrect idea. Several studies [Schroeder and Kucera
2022] have shown their effectiveness in multiple other domains.

The SMoL Tutor’s content structure is also influenced by work on case comparisons (which draws
analogies between examples). [Alfieri et al. 2013] suggests that asking (rather than not asking)
students to find similarities between cases, and providing principles after the comparisons (rather
than before or not at all), are associated with better learning outcomes.

3 THE SMOL LANGUAGE

SMoL is designed to capture common features of many modern languages. The syntax of SMoL is
presented in Figure 1, where t stands for terms, d stands for definitions, e stands for expressions, c
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t ::= d

| e

d ::= (defvar x e)

| (deffun (f x ...) body)

e ::= c

| x

| (lambda (x ...) body)

| (let ([x e] ...) body)

| (begin e ... e)

| (set! x e)

| (if e e e)

| (cond [e body] ... [else body])

| (cond [e body] ...)

| (e e ...)

body ::= t ... e

program ::= t ...

Fig. 1. The syntax of SMoL.

stands for constants (i.e., number, boolean, and string), and x and f are identifiers (variables). The
last kind of expression (i.e., (e e ...)) is function application.
SMoL’s Lispy syntax is an artifact of the course (Section 4) using Racket [Friedman et al. 2001;

Krishnamurthi 2007]; however, it also proved to be pedagogically valuable. We have found the
parentheses useful when discussing scope in conjunction with local-binding features like let. This
avoids the various confusing “variable lifting” semantics found in languages like Python ([Politz
et al. 2013]; see also posts like [froadie 2022]), where the actual defined range of a variable is not
apparent from the source code.

Nevertheless, most SMoL programs are easy to translate to other languages. We present machine-
translated Python and JavaScript versions of our programs in Translated_Programs.html in
the supplementary materials. Furthermore, we intend to make a multi-lingual tutor in the future
(Section 12).

The semantics of SMoL is as described in Section 1: essentially, it’s the semantics of Scheme and
the dynamic part of SML/OCaml. SMoL includes limited primitive operators (Table 1) to work with
numbers, strings, and vectors. It provides only one equality operator, which tests for exact equality
between atomic values and for pointer equality between other values.

Students are given a working implementation of SMoL, built as a #lang language inside Racket
[Felleisen et al. 2018]. This language provides only the defined syntax and semantics of SMoL,
with no other Racket features present. (As in Racket, arguments evaluate left-to-right, to give
stateful programs an unambiguous semantics.) The implementation is available online: https:
//github.com/shriram/smol.

4 PAPER ROADMAP

This paper describes a four-year effort to obtain a quality instrument to measure misconceptions
and to build a tutor to address them.

The first step was a two-year process to generate (a) programs that tend to trip up students and
(b) incorrect responses to those programs (Section 5), using a tool for the purpose (Section 5.1).
These were then curated (Section 5.2) to produce an instrument that was tested for one more year
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(Section 5.3). This underwent one more round of curation to produce the final instrument (Sec-
tion 6.2).
We then present the tutor (Section 6). In particular, we present the list of misconceptions—

grounded in student data—that are the focus of this project (Section 7). We also evaluate the tutor’s
effectiveness at correcting them (Section 8).
All this work is done with students in a “Principles of Programming Languages” class at a

selective, private US university. The class has about 70–75 students per year. It is not required,
so students take it by choice. Virtually all are computer science majors. Most are in their third
or fourth year of tertiary education; about 10% are graduate students. All have had at least one
semester of imperative programming, and most have significantly more experience with it. Most
have had close to a semester of functional programming. The student work described here was
required, but students were graded on effort, not correctness.

Naturally, we should wonder to what extent the demographic affects the results: wemay simply be
studying weaknesses at this institution! We therefore work with two other populations (Section 9).
In both, we find similar results.

5 GENERATING AND COLLATING PROBLEMS

In Section 10, we discuss several papers that have provided reports of student misconceptions with
different fragments of SMoL. However, it is difficult to know how comprehensive these are. While
some are unclear on the origin of their programs, they generally seem to be expert-generated.
The problem with expert-generated lists is that they can be quite incomplete. Education re-

searchers have documented the phenomenon of the expert blind spot [Nathan et al. 2001]: experts
simply do not conceive of many learner difficulties. Thus, we need methods to identify problems
beyond what experts conceive.

Additionally, in this paper, we intentionally use the word misconceptions rather than mistake. A
mistake can happen for any reason (e.g., selecting the wrong answer from amenu). A misconception,
however, implies a conceptual problem: the student has formed an incorrect concept in their head.
For instance, they may think that mutable structures are copied on function calls, or that scope is
resolved dynamically. This requires probing what they are thinking.
Finally, we are inspired by the significant body of education research on concept inventories

[Hestenes et al. 1992] (with a growing number for computer science, as a survey lists [Taylor et al.
2014]). In terms of mechanics, a concept inventory is just an instrument consisting of multiple-
choice questions (MCQs), where each question has one correct answer and several wrong ones.
However, the wrong ones are chosen with great care. Each one has been validated so that if a
student picks it, we can quite unambiguously determine what misconception the student has. For
instance, if the question is “What is sqrt(4)?”, then 37 is probably an uninteresting wrong answer,
but if people appear to confuse square-roots with squares, then 16 would be present as an answer.1

All these, however, add up to a somewhat challenging demand. We want to produce a list of
questions (each one an MCQ) such that

(1) we can get past the expert blind spot,
(2) we have a sense of what misconceptions students have, and
(3) we can generally associate wrong answers with specific misconceptions, approaching a

concept inventory.

1Concept inventories are thus useful in many settings. For instance, an educator can use them with clickers to get quick
feedback from a class. If several students pick a specific wrong answer, the educator not only knows they are wrong, but also
has a strong inkling of precisely what misconception that group has and can address it directly. We expect our instruments
to be useful in the same way.
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5.1 Generating Problems Using �izius

Our main solution to the expert blind spot is to use the Quizius system [Saarinen et al. 2019]. In
contrast to the very heavyweight process (involving a lot of expert time) that is generally used
to create a concept inventory, Quizius uses a lightweight, interactive approach to obtain fairly
comparable data, which an expert can then shape into a quality instrument.

In Quizius, experts create a prompt; in our case, we asked students to create small but “interesting”
programs using the SMoL language. Quizius shows this prompt to students and gathers their
answers. Each student is then shown a set of programs created by other students and asked to
predict (without running it) the value produced by the program.2 Students are also asked to provide
a rationale for why they think it will produce that output.
Quizius runs interactively during an assignment period. At each point, it needs to determine

which previously authored program to show a student. It can either “exploit” a given program that
already has responses or “explore” a new one. Quizius thus treats this as a multi-armed bandit
problem [Katehakis and Veinott 1987] and uses that to choose a program.
The output from Quizius is (a) a collection of programs; (b) for each program, a collection of

predicted answers; and (c) for each answer, a rationale. Clustering the answers is easy (after ignoring
some small syntactic differences). Thus, for each cluster, we obtain a set of rationales.
After running Quizius in the course (Section 4), we took over as experts. Determining which

is the right answer is easy. Where expert knowledge is useful is in clustering the rationales. If all
the rationales for a wrong answer are fairly similar, this is strong evidence that there is a common
misconception that generates it. If, however, there are multiple rationale clusters, that means the
program is not discriminative enough to distinguish the misconceptions, and it needs to be further
refined to tell them apart. Interestingly, even the correct answer needs to be analyzed, because
sometimes correct answers do have incorrect rationales (again, suggesting the program needs
refinement to discriminate correct conceptions from misconceptions).
Prior work using Quizius [Saarinen et al. 2019] finds that students do author programs that

the experts did not imagine. In our case, we seeded Quizius with programs from prior papers
(Section 10), which gives the first few students programs to respond to. However, we found
that Quizius significantly expanded the scope of our problems and misconceptions. In our final
instrument, most programs were directly or indirectly inspired by the output of Quizius.

5.2 Collating Problems

While Quizius is very useful in principle, it also produced data that needed significant curation for
the following reasons:

• A problem may have produced diverse outputs simply because it was written in a very
confusing way. Such programs do not reveal any useful behavior misconceptions, and must
therefore be filtered out. For instance:

(defvar x 1)

(defvar y 2)

(defvar z 3)

(deffun (sum a ...) (+ a ...))

(sum x y z)

2In the course (Section 4), students were given credit for using Quizius but not penalized for wrong answers, reducing their
incentive to “cheat” by running programs. They were also told that doing so would diminish the value of their answers.
Some students seemed to do so anyway, but most honored the directive.
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Fig. 2. Screenshot of a SMoL �iz question.

A reader might think that sum takes variable arguments (so the program produces 6), but in
fact ... is a single variable, so this produces an arity error.
• Some programs relied on (or stumbled upon) intentionally underspecified aspects of SMoL
such as floating-point versus rational arithmetic. While these are important to programming
in general, we considered them outside the scope of SMoL (due to their lack of standardization).
Mystery languages (section 10) are a good way to explore these features.
• A problem may have produced diverse outputs simply because it is hard to parse or to
(mentally) trace its execution. One example was a 17-line program with 6 similar-looking
and -named functions. As another example:

(defvar a (or (/ 1 (- 0.25 0.25)) (/ 1 0.0)))

(defvar b (and (/ 1 (- 0.25 0.25)) (/ 1 0.0)))

(defvar c (and (/ 1 0.0) (/ 1 (- 0.25 -0.25))))

(defvar d (or (/ 1 0) (/ 1 (- 0.25 -0.25))))

(and (or a c) (or b d))

This program is not only confusing, it also tests interpretations of (a) exact versus inexact
numbers and (b) truthy/falsiness, leading to significant (but not very useful) answer diversity.
• As noted above, a program’s wrong (or even correct) answers may correspond to multiple
(mis)conceptions. In these cases, the program must be refined to be more discriminative.

and so on. We therefore manually curated the Quizius output to address these issues.

5.3 The SMoL �izzes

Having curated the output, we had to confirm that these programs were still effective! That is, they
needed to actually find student errors.
We therefore turned the programs into a set of quizzes (in the US sense: namely, a brief test

of knowledge) that we call the SMoL Quizzes. There were three quizzes, ordered by linguistic
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Table 2. Some questions and student answers from �iz 1. Each table row is a program and the (relative)
frequencies of student answers. Answers that can be considered correct are marked with *. Wrong answers

that we discuss are marked with †.

Questions Frequency Table of Answers

(defvar x 0)

(defvar y x)

(defvar x 2)

x

y

†59% 2 0

*32% Error

4% Other: 2 2

3% “Nothing is printed”
2% 0 0

(defvar x 42)

(deffun (create)

(defvar y 42)

y)

(create)

(eq? x y)

*65% Error
†29% 42 #t

6% Other

(defvar x 5)

(deffun (reassign var_name new_val)

(defvar var_name new_val)

(mpair var_name x))

(reassign x 6)

x

*53% #(6 5) 5

*20% Error
†11% #(6 6) 5
†11% #(6 6) 6

5% “Nothing is printed” or Other

complexity. The first consisted of only basic operators and first-order functions. The second added
variable and structure mutation. The third added lambda and higher-order functions.

The goal of the SMoL Quizzes was to confirm that the aforementioned processes of cleansing
and enriching the problems was successful. The quizzes were therefore administered in the third
year of this project in the same course. Figure 2 shows a sample question. Every question got an
“Other” option. If chosen, the quiz gave the user a text box with the caption “Please specify”. The
goal here was to record any other answers, which in turn might lead to fresh misconceptions.
Question orders were partially randomized. We wanted students to get some easy, warm-up

questions initially, so those were kept at the beginning. Similarly, we wanted programs that are
syntactically similar to stay close to each other in the quiz. This is so that, when students got a
second such program, they would not have to look far to find the first one and confirm that they
are indeed (slightly) different, rather than wonder if they were seeing the same program again.
Students only received feedback after having completed a whole quiz. At the end of each quiz,

they received both summative feedback and a refutation text that explained every program that
appeared in the quiz. Students were also encouraged to run the programs, but we have little reason
to believe that they did (and certainly they asked few questions on the class forum about them).

Due to space limitations, we present the entire instrument in SMoL Quizzes/instrument in the
supplementary materials. Here we focus on a few programs where student choices correspond to
misconceptions identified earlier, thereby also showing that the curated programs are still effective.
Syntactically, #t and #f are true and false, while #(...) is a vector. We use a * to indicate the
correct answer (which also matches the implementation’s output).

5.3.1 �iz 1: Basic Operators and First-Order Functions. Table 2 lists programs in Quiz 1 that we
consider the most interesting. These data confirm the presence of scope-related misconceptions:
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Table 3. Some questions and student answers from �iz 2. Each table row is a program and the (relative)
frequencies of student answers. Answers that can be considered correct are marked with *. Wrong answers

that we discuss are marked with †.

Question Frequency Table of Answers

(defvar x (mvec 2 3))

(set-right! x x)

(set-left! x x)

x

†50% #(#(2 #(2 3)) #(2 3))

*29% x=#(x x) or something similar. Both
(left x) and (right x) are x itself.

†16% Error

5% Other

(defvar v (mvec 1 2 3 4))

(defvar vv (mvec v v))

(vec-set! (vec-ref vv 1) 0 100)

vv

*62% #(#(100 2 3 4) #(100 2 3 4))
†26% #(#(1 2 3 4) #(100 2 3 4))

6% Error

4% #(#(1 2 3 4) #(1 2 3 4))

2% Other

(defvar x (mvec 123))

(let ([y x])

(vec-set! y 0 10))

x

*59% #(10)
†36% #(123)

5% Other

(defvar x 12)

(deffun (f x)

(set! x 0))

(f x)

x

*65% 12
†31% 0

4% Other

(defvar x 5)

(deffun (set1 x y)

(set! x y))

(deffun (set2 a y)

(set! x y))

(set1 x 6)

x

(set2 x 7)

x

*59% Other: 5 7
†27% 6 7

11% 5 5

2% Other: Error
1% Other: 5 6

(1) At least 59% of students incorrectly believe that a variable can be defined twice in one block.
(2) 29% of students believe that a variable defined in a function will be available in the top-

level (or global) environment after the function is called. That is, these students may have a
dynamic scope misconception.

(3) 22% (11% + 11%) of students believe variables themselves can be passed as arguments and
redefined inside the function. They disagree on whether the redefinition persists after the
function call.

5.3.2 �iz 2: Adding Variable and Structure Mutation. Table 3 lists interesting programs after the
addition of state. These data suggest the students have aliasing-related misconceptions:

• Up to 50% of students think vectors are copied rather than aliased.
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Table 4. Some questions and student answers from �iz 3. Each table row is a program and the (relative)
frequencies of student answers. Answers that can be considered correct are marked with *. Wrong answers

that we discuss are marked with †.

Question Frequency Table of Answers

(deffun (f x)

(lambda (y) (+ x y)))

((f 2) 1)

*82% 3
†17% Error

1% Other

(defvar x 1)

(defvar f

(lambda (y)

(+ x y)))

(set! x 2)

(f x)

*74% 4
†21% 3

6% Other: Error

(defvar x 1)

(deffun (f y)

(+ x y))

(set! x 2)

(f x)

*88% 4
†10% 3

3% Other: Error

(deffun (make-counter)

(let ([count 0])

(lambda ()

(begin

(set! count (+ count 1))

count))))

(defvar f (make-counter))

(defvar g (make-counter))

(f)

(g)

(f)

(f)

(g)

*62% 1 1 2 3 2
†34% 1 1 1 1 1

4% Other
1% 1 1 2 3 4

• 16% of students think trying to construct and print a self-referring vector would error. (This
program is ambiguous: constructing works in most SMoL languages, but printing may well
cause a problem. These identified ambiguities are addressed in Section 6.2.)
• 31% of students think a variable is aliased by a parameter if the two variables have the same
name. Perhaps interestingly, fewer students (27%) think the variable aliasing would happen
if the two variables had different names.

5.3.3 �iz 3: Adding Closures and Higher-Order Functions. Table 4 lists interesting programs after
the addition of closures and higher-order functions. It extends what we saw with loops in Section 1:
that students have misconceptions about their interaction with mutable variables:

• 17% of students think lambda functions can’t refer to free variables.
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• 21% of the students think mutating a variable defined outside a lambda can’t possibly change
the behavior of the lambda. Perhaps interestingly, this misconception seems to depend on
how the lambda is constructed (compare the middle two programs).
• Student understanding of the let-over-lambda pattern, as seen in table 4, is weak. The same
pattern occurs in any SMoL language that permits local variable binding outside a closure.

6 THE SMOL TUTOR

So far, we have focused on identifying problems. As noted earlier (Section 5.2), we provided students
with refutation texts after the quizzes, but it is unclear to what extent students read, understood, or
internalized these. We also wanted to determine whether other populations run into these issues. It
was, however, unclear whether just quizzes would interest them.

Furthermore, while the quizzes may be a useful diagnostic, our goal is not only to find faults
but to improve the understanding of basic programming language behavior. We believe (and
presumably so does anyone else whowrites a formal semantics!) that an understanding of these basic
program behaviors is important, and even more so when it comes to understanding concurrency,
ownership, and other advanced features. Even more simply, misunderstanding these clearly impacts
development and debugging time.
In response, we created a tutor : the SMoL Tutor (https://smol-tutor.xyz/). It is built around our

quiz instruments and the detected misconceptions. We describe the Tutor from a user’s perspective
in Section 6.1, and explain how it was populated from the SMoL Quizzes in Section 6.2. We then
discuss what we learned from its data (Section 7), and finally evaluate its effectiveness as a tutor
(Section 8).

6.1 The User Experience

The Tutor covers five major topics, shown on the left in Table 5. The larger topics are further
broken down into 2–3 modules. The goal was for students to spend at most 20–30 minutes per
module. Our data show that in practice, students spent about 9.8 (median) minutes.

Each tutorial consists of a sequence of questions. Most questions in the Tutor are interpreting
questions.3 These questions (illustrated in Figure 34) are versions of the SMoL Quizzes (obtained
by the process described in Section 6.2). In each of these questions, students are shown a program
and asked to predict the program’s running result(s) by answering an MCQ (with an “Other” option).
After making a choice, students receive feedback. If a student chooses incorrectly, they are (a) given
an explanation that is based on the misconception associated with that wrong answer (or a generic
one, if there is not a specific misconception), and then (b) asked to answer a second question:

(1) The second question is semantically the same as the first, but with superficial changes (e.g.,
variable names, constants, and operators are changed) so that the student cannot immediately
guess the answer.

(2) Instead of multiple-choice, students must type the answer into a text box. (The Tutor normal-
izes text to accommodate variations.) This is intentional. First, we wanted to force reflection
on the explanation just given, whereas with an MCQ, students could just guess. Second, we
felt that students would find typing more onerous than clicking. In case students had just
guessed on a question, our hope is that the penalty of having to type means, on subsequent

tasks, they would be more likely to pause and reflect before choosing.

3The Tutor also asked students to perform some other activities, like showing programs and asking for their heap content,
which we do not cover in this paper.
4This shows the old version of the Tutor, which was used for the research in this paper. The current Tutor supports multiple
syntaxes, not only the parenthetical one.
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Fig. 3. Screenshots of an interpreting question in SMoL Tutor. The top-le� shows the initial state, where the
question is presented as an MCQ. If a student chooses a wrong answer, they will receive feedback (bo�om-le�)
and will be asked a similar question (right). The similar question must be answered by typing.

In addition to asking students questions, the Tutor along the way introduces terminology and
states the true conceptions. These are the teaching goals of the Tutor. We therefore refer to these
as goal sentences. Table 5 lists the (abbreviated) goal sentences for each tutorial. Readers can find
the full Tutor in SMoL Tutor/instrument in the supplementary materials.
Some later tutorials include questions about earlier tutorials so that we can check whether

students remember the concepts across modules. In particular, themut-vars tutorial starts with
questions about scope, and lambda starts with questions about mut-vars and vectors.
Of the modules, local is the least portable across languages. While local binding is of course

present in other languages, this is mostly covered using nested defvars in earlier modules, starting
with scope. The distinction central to this module (between three local-binding constructs with
slightly different scopes) is primarily a focus of Lispy languages. Therefore, we exclude this module
from our analysis and instruments, and indeed plan to deprecate the module in future versions.

Section 5.2 discusses the partial randomization employed by the SMoL Quizzes. In contrast, the
SMoL Tutor does not randomize question order. This is because the Tutor consists of more than
just questions: it also has explanatory text. This text is based on the preceding problems. Authoring
it is therefore somewhat like writing a textbook, with complex dependencies that cannot easily be
broken. Reordering the problems would introduce dangling references or even lead to misleading
ones.

6.2 Collating Problems for the Tutor

The SMoL Tutor’s interpreting questions are the final instrument of this paper. We bootstrap it
from the SMoL Quizzes, but made the following alterations:
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Table 5. SMoL Tutor tutorials and their goal sentences.

Tutorial Goal Sentences

scope: Variable defini-
tions and function defi-
nitions

(1) Referring to an unbound variable leads to an error.
(2) Define "blocks".
(3) SMoL is lexically scoped rather than dynamically scoped.
(4) SMoL disallows defining a variable twice in one block.
(5) SMoL is eager (and evaluates from left to right) rather than lazy,

reactive, or relational.

mut-vars: Variable up-
dates (1) Variable assignment respects the hierarchical structure of blocks.

(2) Variables do not alias.

begin: Sequencing ex-
pressions

A sequencing expression evaluates its sub-expressions from left to
right and returns the value of the last sub-expression.

vectors: Vectors and
vector updates (1) Define heap and memory addresses.

(2) Vectors can be referred to by vectors, including themselves.
(3) Vectors are not copied but aliased by bindings.
(4) Constructing vectors doesn’t alter environments.
(5) Introducing bindings doesn’t alter the (value part of) heap.

lambda: Lambda ex-
pressions (1) Functions are (first-class) values.

(2) Functions remember the environment where they were created.
(3) Functions can be created with lambda expressions.
(4) A function definition can be viewed as a variable definition plus

a lambda expression.

local: Local binding
forms

Introduce let, letrec, and let*.

(1) In the process of developing the goal sentences, we felt the existing programs were insufficient
to cover the ideas we wanted students to work through. For instance, SMoL Quizzes did not
alias vectors using defvar, so we added this program:

(defvar x (mvec 100))

(defvar y x)

(vec-set! x 0 200)

y

(2) We renamed vector operators to avoid confusion between vset!, which replaces a vector
element, and set!, which mutates variables. We rename all vector operators from, for example,
vset! to vec-set!.

(3) We deferred the local binding forms to the end, since we felt they were less essential. We
therefore rewrote programs that use it to not depend on it.

(4) We removed some programs that relied on underspecified aspects or unimportant aspects of
SMoL: e.g., whether operations on pairs could be applied to arbitrary vectors:
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(pair? (mpair 1 2))

(pair? (mvec 1 2))

As another example, one hinged on whether or not a function’s formal parameter could have
the same name as the function itself:

(deffun (f f) f)

(f 5)

(5) We resolved ambiguities in some programs, either adding answer choices or even adding
other questions to tease out different interpretations.

(6) To reduce the number of concepts, we removed programs that relied upon immutable vectors
and lists, because they did not seem to create problems. (For brevity, we leave these out of
the presentation of SMoL in Section 3, though they are in the implementation.)

(7) We removed questions related to function equality, which was not a focus of the Tutor.5

(8) We removed programs of a “Lispy” nature, such as one where the answer depended on
whether the reader correctly understood this inequality:

(filter (lambda (n) (> 3 n)) '(1 2 3 4 5))

This checks whether n < 3, but some presumably vocalized it as “greater than 3, n?”.

Most of these steps either modify or elide programs. Two cases, filling gaps in light of the goal
sentences and resolving ambiguities, introduce programs. Starting with the 37 programs in the
SMoL Quizzes, we added 52 more programs to arrive at a total of 89.

In addition to generating this set of programs, we also modified the answer options. In addition
to retaining the correct and incorrect answers from the SMoL Quizzes (and constructing our best
guess of analogous incorrect answers for the new problems), we added more wrong answers.

The reason is as follows. The SMoL Quizzes often have very few wrong choices: of the 37 tasks,
26 have only three choices (including the correct answer and the “Other” option6), seven have
4, and only four have 5 or 6. Thus, in most cases, students have a 25% or even 33% chance of
just guessing the right answer or successfully using a process of elimination. By increasing the
number of options, we hoped to greatly reduce the odds of getting the right answer by chance or
by elimination.
It was important to add wrong answers that are not utterly implausible, because those would

become easy to eliminate. Therefore, we added numeric constants mentioned in the problem,
permuted some of the values in case of multiple outputs, and so on. In general, we ended up
increasing the number of choices substantially: only 8 out of the 89 questions have three or four
choices; 70 questions have 5–8 choices; and 11 questions have 9–14 choices. We hope this reduced
both guessing and elimination, and forced students to actually think through the program. Of
course, these new answers do not have a clear associated misconception, so their mistakes are
given the generic explanation.

7 MISCONCEPTIONS DETECTED BY THE SMOL TUTOR

We now examine what we learned from the interpreting questions in terms of program behavior
misconceptions. But first, we explain how we associate incorrect answers with misconceptions.

5However, we believe there is a good deal of confusion about notions of equality. We intend to add that as a major tutorial
component in future versions.
6In a few cases, we removed the correct answer from the choices. A student would therefore have to click on “Other” and
type it in. The idea was to make the “Other” option more salient and plausible.
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We do not present the results of begin and local (Table 5), because they focus on constructs
not usually found in non-Lispy languages. They were included in the Tutor to help students write
programs for the course, but are not interesting from a SMoL perspective.

7.1 Misinterpreters

In principle, an expert can identify what misconceptions a particular incorrect answer might
correspond to. In practice, we found this rather difficult for three reasons. First, with 89 programs,
each with several answers, it’s easy to make mistakes. Second, our own expert blind spot may
prevent us from seeing an interpretation that would lead to an additional association. Finally, and
specific to our case, since we had either curated or written all the programs and answers, we were
likely to miss some associations we had not intended.
To address this problem, we formalized misconceptions as interpreters. That is, for each mis-

conception we created a corresponding misinterpreter. This is an interpreter for the SMoL syntax
that intentionally has a semantic error corresponding to that misconception. Put differently, a
misinterpreter is a like a “definitional interpreter for a misconception”.
By running programs through the misinterpreters, we can more uniformly and rigorously

identify all the misconceptions associated with a wrong answer. Furthermore, if we identify a new
misconception (or alter a misinterpreter), it is easy to automatically re-classify all the answers. By
using misinterpreters, we indeed found new interpretations for existing program-answer pairs. We
provide all the misinterpreters in the artifact.

7.2 A Catalog of Misconceptions

We iteratively created our final catalog of misconceptions (from the perspective of the data in this
paper). We started with misinterpreters representing the misconceptions described in Section 5.3.
These are misconceptions for which we have reasonable validation (due to the prose in Quizius), so
we call them grounded misconceptions. We then looked at wrong answers not covered by these
but chosen by students, and did our best to distill these into misconceptions. These are surmised

misconceptions (which we identify with a ‡), which need to be validated in the future.7 We then
re-ran the misinterpreters against the chosen answers. We terminated when all the remaining
wrong answers were either (a) found in very few students (we found a gap between 23% and 13%,
and hence took 14% as the threshold), (b) difficult for us to attribute to a misconception, or (c)
appeared to us to be “Lispy” and hence not of broad interest.

Tables 6 to 8 list the final catalog. For each, we also present a Tutor question for which the marked
wrong answer can be explained by only the named misconception. That is, that program-answer
pair is a representative example of that misconception.8

Confirmed Misconceptions. The Tutor confirmed all the misconceptions from Quizius via the
SMoL Quizzes.

Added Misconceptions. The misinterpreters helped us find misinterpretations that we had over-
looked. For instance, consider this program from Quiz 2:

7To keep the time spent in each module reasonable, the SMoL Tutor does not ask students for rationales for their programs.
However, we could easily modify it to do so a small number of times per user, to make progress towards this need.
8An astute reader may well imagine another misinterpretation; but we presumably did not find evidence of it in our data.
We do welcome other misinterpretations, for which we can add more misinterpreters!
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Table 6. Ground misconceptions identified by the SMoL Tutor. Answers marked with “**” represent the
misconception. (Part I)

Misconception Question Table of Answers

CallByRef Function calls
alias variables.

(defvar x 12)

(deffun (set-and-return y)

(set! y 0)

x)

(set-and-return x)

78% 12

11% error

**10% 0

1% 23

CallsCopyStructs Function
calls copy data structures.

(defvar x (mvec 1 0))

(deffun (f y)

(vec-set! y 0 173))

(f x)

x

90% #(173 0)

**10% #(1 0)

DeepClosure Closures copy
the values of free variables.

(defvar x 1)

(defvar f

(lambda (y)

(+ x y)))

(set! x 2)

(f x)

86% 4

**10% 3

3% error

1% lambda

DefByRef Variable defini-
tions alias variables.

(defvar x 12)

(defvar y x)

(set! x 0)

x

y

85% 0 12

**12% 0 0

2% error

1% depends on im-
plementation.

DefOrSet Both definitions
and variable assignments are
interpreted as follows: if a
variable is not defined in the
current environment, it is de-
fined. Otherwise, it is mutated
to the new value.

(set! foobar 2)

foobar

85% error

**15% 2

DefsCopyStructs Variable
definitions copy structures
recursively.

(defvar x (mvec 100))

(defvar y x)

(vec-set! x 0 200)

y

**67% #(100)

30% #(200)

1% #(300)

1% error

(defvar x 12)

(deffun (f x)

(set! x 0))

(f x)

x

We had assumed the wrong answer 0 is caused by CallByRef. However, our misinterpreters made
us realize it can also be explained by FlatEnv. This could also explain why we see a difference in
error rate when the formal and actual parameter have the same name (as mentioned in Section 5.3.2).
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Table 7. Ground misconceptions identified by the SMoL Tutor. Answers marked with “**” represent the
misconception. (Part II)

Misconception Question Table of Answers

FlatEnv There is only one
environment, the global en-
vironment. (This miscon-
ception is a kind of dynamic
scope.)

(deffun (addy x)

(defvar y 200)

(+ x y))

(+ (addy 2) y)

96% error

**4% 402

FunNotVal Functions are
not considered first-class
values. They can’t be bound
to other variables, passed as
arguments, or referred to by
data structures.

(deffun (twice f x)

(f (f x)))

(deffun (double x)

(+ x x))

(twice double 1)

83% 4

**11% error

4% 2

1% 8

IsolatedFun Functions
can’t refer to free variables
except for the built-in ones.

(defvar y 1)

(deffun (addy x)

(+ x y))

(addy 2)

77% 3

**23% error

NoCircularity Data struc-
tures can’t (possibly indi-
rectly) refer to themselves.

(defvar x (mvec 1 0 2))

(vec-set! x 1 x)

(vec-len x)

76% 3

**14% error

9% Run out of memory
or time.

1% +inf

StructByRef Data struc-
tures might refer to vari-
ables by their references.

(defvar x 3)

(defvar v (mvec 1 2 x))

(set! x 4)

v

67% #(1 2 3)

**24% #(1 2 4)

9% error

StructsCopyStructs Stor-
ing data structures into data
structures makes copies.

(defvar x (mvec 2 3))

(set-right! x x)

(set-left! x x)

x

65% #0=#(#0# #0#)

(Racket circular
object notation)

24% #(#(2 3) #(2 3))

**6% #(#(2 #(2 3)) #(2 3))

6% error

A New Potential Misconception. For the following program, added in the Tutor:

(defvar y (+ x 2))

(defvar x 1)

x

y

56% of students asserted that it produces 1 3. Based on this, we surmise that students might have
another misconception, which we define as Lazy‡. (Recall that SMoL is eager, but even in many
lazy languages, this would be an error.)

Another Potential Misconception, and Its Effect on Interpreting Descriptions. Consider this program
from the SMoL Tutor:
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Table 8. Surmised misconceptions identified by the SMoL Tutor. Answers marked with “**” represent the
misconception.

Misconception Question Table of Answers

NestedDef‡ Sequences of
definitions are interpreted as
if they are written in nested
blocks. A definition is not in
the scope of later definitions.

(defvar x 1)

(deffun (main)

(deffun (get-x) x)

(defvar x 2)

(get-x))

(main)

92% 2

**8% 1

Lazy‡ Expressions are only
evaluated when their values
are needed.

(defvar y (+ x 2))

(defvar x 1)

x

y

**57% 1 3

43% error

(defvar x 1)

(deffun (main)

(deffun (get-x) x)

(defvar x 2)

(get-x))

(main)

This program, suitably translated, would produce 2 in a wide variety of languages (Python,
JavaScript, Racket, Java, etc.), because get-x and the inner x are in the same scope block. The
answer 1 cannot be explained by any of our existing misconceptions. Based on this, we surmise a
new misconception, NestedDef‡. (Though its frequency falls below our threshold, our reading of
answers suggests this may be more widespread, and we feel it needs to be investigated more.)

Once we turned this into a misinterpreter, we found that it unexpectedly captured the program-
answer pair for the following program from Quiz 1—which should be an error, due to the double-
binding of x in the same scope block—and the answer 2 0:

(defvar x 0)

(defvar y x)

(defvar x 2)

x

y

Previously, we had interpreted this only as DefOrSet, because students had stated that the second
(defvar x ....) “mutates” or “redefines” x. This is reminiscent of the behavior of languages like
Python, which use the same syntax both for binding new variables and for mutating existing ones.
The problem here is that the word “redefine” underspecifies how the second definition is inter-

preted. We had interpreted it as mutating the binding established by the first definition, which fits
DefOrSet. However, another possibility is that it shadows the binding (i.e., establishes a new scope
block). We did not recognize that the original misconception is underspecified until we uncovered
the new (surmised) misconception.

Summary. To summarize, we used the SMoL Tutor, with an expanded set of programs, to inves-
tigate student misconceptions. We implemented the idea of misinterpreters to help us properly
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Fig. 4. How many students chose a wrong answer that (uniquely) represents a misconception? (Downward
tendency suggests improvement over time.)

classify student performance.Wewere able to reconfirm all the previously identifiedmisconceptions,
refine some of them, and also identify potential new ones (that need further investigation).

8 IS THE TUTOR EFFECTIVE?

Recall that the SMoL Tutor is not only a collection of MCQs: it is also a tutor! So far, we have
investigated the value of the MCQs. Now we examine its tutoring aspect. Concretely, we ask:
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RQ How effective is the Tutor at correcting each misconception?

To study this, we perform the following analysis per misconception. Using misinterpreters, we
identify those questions whose wrong answers fit only one misconception (i.e., only one output
matches that produced by that misinterpreter, and it matches only that misinterpreter). We then
examine student performance over time across those questions. This would let us examine how
they do on just that topic, in isolation, over time.

We present the result of this analysis in two forms. Graphically, we show plots in Figure 4. Each
figure shows the percentage of students who chose the answer corresponding to that misconception.
Ideally, we would like to see these percentages diminish.
Indeed, that is what we see in most of the graphs. The exceptions are CallsCopyStructs,

NestedDef‡, and StructsCopyStructs, which have only one problem (and hence no trend), and
DefOrSet and FunNotVal, which show an increase. The lack of improvement for FunNotVal is
unsurprising because the Tutor does not explicitly address this issue, focusing on closures created
by lambdas rather than named functions. (However, this does not explain the increase!)
We also perform a logistic regression to see whether these improvements are significant (at a

p < 0.05 threshold); details are in Paper.html in the supplementary materials. Of the 11:

• Of the nine seemingly improved (i.e., decreased) misconceptions:
– Two are not significant: CallByRef (p-value = .074); NoCircularity (p-value = .075).
– The other seven are significant.
• However, the two with an increasing trend (DefOrSet and FunNotVal) are also significant.

These data broadly suggest that the Tutor is a net positive. Ultimately, however, what these data
really show is a need for improvement in the Tutor. When designing the Tutor questions, many
more were intended to be representative of single misconceptions. However, as noted in Section 7.1,
it is easy to be incomplete (or incorrect) in ascribing misconceptions. Furthermore, as their set
grows, it is difficult to reassess all the problems manually. Once evaluated using misinterpreters, we
found far fewer problems than we would have liked. Concretely, only 40 of the 71 eligible problems
(after removing the non-SMoL modules) were useful in the above analysis.

We therefore view the above data as purely formative: they suggest that the Tutor most likely

did not do harm and perhaps even may have done some good. However, it would be improper to
read too much into the analysis. It is quite possible that some of the other problems would have
found issues. Rather, what we really see is value in the misinterpreter concept. It is not only useful
for analysis, it is also valuable for problem design: in the next iteration of the Tutor, we will use
misinterpreters actively to shape the incorrect answers and, as necessary, update the programs as
well. We therefore hope to have much more thorough analyses in future work.

9 PERFORMANCE ON OTHER POPULATIONS

There is, of course, a significant danger that the data above have been overfitted to only one
institution (Section 4, henceforth University 1), thereby actually reflecting the state of its curriculum
rather than some greater truth about program behavior understanding. We already have some
reason to believe this is not the case: the related work discussed in Section 10 is drawn from many
institutions in multiple countries with different educational preparations, levels, and demographics.
Nevertheless, that gives us only limited information about the specific questions andmisconceptions
described above.
Fortunately, we were able to deploy the Tutor on two other populations:

• University 2 is a primarily public university in the US. It is one of the largest Hispanic-serving
institutions in the country. As such, its demographic is extremely different from those whose
data were used above. The Tutor was used in one course in Spring 2023, taken by 12 students.
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Table 9. Similar misconceptions found in prior research.

Publication Population Languages Misconceptions

[Fleury 1991] Unclear, likely CS2
students

Pascal CallerEnv‡; IsolatedFun; De-
fOrSet (See their RULEs 2, 3a, and
3b in TABLE 2; RULE 1 doesn’t
apply to us.)

[Goldman et al.
2008, 2010]

CS1 students Java,
Python,
Scheme

Scope and memory model (See
their Figures 4 and 5)

[Fisler et al.
2017]

Third- and fourth-
year undergrads

Java and
Scheme

FlatEnv; CallByRef; CallsCopy-
Struct; DefByRef (See their Sec-
tion 4)

[Saarinen et al.
2019]

CS2 students Java StructByRef (Their G2); Def-
ByRef or DefCopyStructs (Their
G3); CallsCopyStruct (Their G4).

[Strömbäck
et al. 2023]

CS masters Python FlatEnv; CallByRef; DefsCopyS-
truct (See their section 4.2)

[Strömbäck
et al. 2023]

CS undergrads C++ FlatEnv; CallByRef; DefsCopyS-
truct (See their section 4.2)

The course is a third-year, programming language course. The students are required to have
taken two introductory programming courses (C++ focused).
• A separate instance of the Tutor was published on the website of a programming languages
textbook [Krishnamurthi 2022]. Over the course of 8 months, 597 people started with the
first module and 103 users made it to the last one. To protect privacy, we intentionally do not
record demographic information, but we conjecture that the population is largely self-learners
(who are known to use the accompanying book), including some professional programmers.
It is extremely unlikely to be the students from either university, because they would not
get credit for their work on the public instance; they needed to use the university-specific
instance. Furthermore, since they were not penalized for wrong answers, it would make
little sense to do a “test run” on the public instance. Finally, we note that there is no overlap
between the dates of submission on the public instance and the semester at University 1.

These two populations are therefore at least somewhat different from the original population, and
help us assess whether the problems we identify are merely an artifact of the first institution.

To evaluate, we computed a Spearman’s rank correlation ρ, ranking questions by what percentage
of students got the question right. Between the original university and University 2, we obtain
a p-value = 2.013e-07. Between the original university and the online population, we obtain a
p-value < 2.2e-16. These show that the other two populations performed similarly to the original
one.9 While further validation on other populations remains essential, these suggest that the
questions are finding misconceptions that may be universal.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 106. Publication date: April 2024.



106:22 Kuang-Chen Lu and Shriram Krishnamurthi

10 RELATED WORK

Misconceptions. Misconceptions related to scope, mutation, and higher-order functions have
been widely identified in varying populations (from CS1 students to graduate students to users
of online forums) over many years (since at last 1991) in varying programming languages (from
Java to Racket) and in different countries (such as the USA and Sweden). Table 9 lists works that
seem most relevant to us. In addition, Tew and Guzdial [Tew and Guzdial 2011] also find several
cross-language difficulties, though they do not classify them as misconceptions.

There are some small differences. [Fleury 1991] identifies a dynamic scope misconception that is
different from FlatEnv:

CallerEnv‡ Function values don’t remember their environments. When a function is called, the
function body is evaluated in an environment that extends from the caller’s environment.

We don’t include CallerEnv‡ in our analysis because in our data, all wrong answers that can be
explained by CallerEnv‡ are also explainable by FlatEnv.

Appendix A of [Sorva 2012a] provides an extensive survey of misconceptions reported in research
up to 2012. There are overlaps between our survey and theirs. For instance, our CallerEnv‡ is their
No. 47. However, because their descriptions are brief, it is difficult to tell whether a misconception
in their survey matches our misconceptions. Because they provide neither misinterpreters nor
representative program-output pairs, it is difficult to determine the overlaps precisely (showing the
value of providing these two machine-runnable descriptions). At any rate, we certainly find no
equivalent of FlatEnv, DeepClosure, and DefByRef in their survey.

Goal Sentences. Our idea of “goal sentences” is not substantially different from the rules of program
behavior from [Duran et al. 2021]. We only used these sentences (or rules) to guide the design of
the Tutor and as text in the Tutor itself. [Duran et al. 2021] argue for other uses of such sentences.

Misinterpreters. Our idea of misinterpreters is related to mystery languages [Diwan et al. 2004;
Pombrio et al. 2017]. Both approaches use evaluators that represent alternative semantics to the
same syntax. However, the two are complementary. In mystery languages, instructors design the
space of semantics with pedagogic intent, and students must create programs to explore that
space. Misinterpreters, in contrast, are driven by student input, while the programs are provided by
instructors. The two approaches also have different goals: mystery languages focus on encouraging
students to experiment with languages; misinterpreters aim at capturing students’ misconceptions.

11 THREATS TO VALIDITY

11.1 Construct Validity

Did we measure the right thing? While our goal is to study student understanding of language
behavior, what we actually measure is performance on MCQs on select programs. MCQs as a
mechanism introduce various clear biases, though we add the “Other” options to somewhat alleviate
them. The small size, syntactic details (such as intentionally meaningless variable names), and other
aspects of the programs may also impact our ability to measure understanding. (This could go both
ways: students may have no trouble understanding behavior in a small program but may struggle
to do so in a larger one.)

A particularly notable threat is the use of Lispy syntax. We chose it for two reasons: both because
it helps clarify scope (Section 3) and because the rest of the course used Racket. However, students

9This measures that three populations have similar relative ratios of correct answers—but may differ in the wrong ones. As
a reader noted, what we would really want to measure is that the per-task distributions are similar, but it was not clear
how to do that with a single concise test. We could compute the correlation per task, but that would generate far too many
hypothesis tests, which would not only require corrections but would also make the result hard to interpret.
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may well perform differently with more familiar syntaxes. It seems unlikely their performance
would be too different given the many languages that have produced similar misconceptions
(Table 9). Nevertheless, we intend to use a variety of syntaxes to examine this issue further.

Finally, we curated programs by hand, so they may well reflect our own biases about miscon-
ceptions. It may be possible to mitigate this problem by synthesizing MCQ programs using the
misinterpreters.

11.2 Internal Validity

Is our reasoning valid? We have applied standard techniques and measurements for evaluating
student responses. However, our instruments still lack the validity of a proper concept inventory.
Their creation requires heavyweight processes (such as Delphi methods [Goldman et al. 2010]) that
require many hours of expert attention as well as conversations with learners, and can hence be
prohibitive in cost. The Quizius method (Section 5.1) was created precisely to be an inexpensive
method that provides a good proxy.
Ultimately, our goal is to provide a reasonable instrument for widespread use. While the set of

all misconceptions could be unbounded, we believe our tasks, especially as embedded in the Tutor,
provide a good starting point for others. In particular, if students select a wrong answer, that is
still of some use to an educator, even if the precise misconception cannot be pinned down with the
highest accuracy. We therefore believe our instruments, and our misinterpreter technique, are of
general value.

A failure in our Tutor’s logging infrastructure led us to miss some responses. These are unlikely
to be task-specific because the Tutor has a generic framework that should perform the same across
tasks. Moreover, on average only 0.4% (sd = 0.6%) of values are missing. Therefore, we do not
believe this had a noticeable impact. (In addition, every wrong answer is still wrong! We may just
not have exactly the right proportions of them.)

11.3 External Validity

How well do our results generalize? Certainly there is reason to question whether our results would
apply to other populations. Section 9 provides preliminary evidence that the results are not specific
to one institution, and Section 10 suggests these issues are widespread. Nevertheless, much more
broad testing is needed to confirm our specific instruments.
The other major concern is the tie to Lispy syntax. Learners in other settings may do worse or

even better with it. Building a Tutor that supports multiple, and more traditional, syntaxes should
help address this issue. We defer this to future work.

12 DISCUSSION

The paper has already identified several areas for future work:

• testing on more varied populations;
• using other syntaxes;
• having more questions that uniquely identify misconceptions; and,
• enabling textual responses in the Tutor so we can better characterize wrong answers.

These can help get us even closer to a good approximation of a true concept inventory. We would
also like the Tutor to make more use of the education theories discussed in Section 2.

We focus here on some issues that we think warrant broader discussion.

Language Design Implications. Our work takes as given the Standard Model. Naturally, it is rea-
sonable to ask whether that should be the default for languages. Suppose, for instance, programmers

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 106. Publication date: April 2024.



106:24 Kuang-Chen Lu and Shriram Krishnamurthi

converge on an “incorrect” behavior; perhaps that should become the behavior of future (versions
of) languages? Indeed, section 1 presents examples of such changes to existing languages.

Some researchers have considered these questions before. For instance, the natural programming
project [Pane et al. 2002] had non-programmer children describe how they would write a program,
and created languages around their utterances; but these were very limited in expressive power.
[Stefik and Siebert 2013] did user studies to design a language’s syntax (a topic we have not covered).
Tunnell Wilson, et al. [Tunnell Wilson et al. 2017] asked what would happen if we “crowdsource” a
language’s semantics, and similarly [Tunnell Wilson et al. 2018] studied programmer preferences
for gradual typing systems.

However, this method is not always productive. The crowdsourcing study found in general a lack
of not only consensus (agreement across people) but even consistency (agreement across responses
from a single person). This agrees with our data: students (and programmers) do not seem to have
clear conceptions of program behavior. Furthermore, even if they agreed, other considerations
(such as performance) might become relevant: e.g., copying data avoids aliasing, but it comes at a
steep cost, which is presumably why languages in the Standard Model do not do it. (Similarly, the
most preferred gradual typing behavior was also the most expensive.) That, combined with the
presumed importance of understanding the behavior of languages we program in, is why the Tutor
focuses on creating a shared, uniform understanding of SMoL.

Program Tracing and Visualization. This paper has not discussed the use of program visualization,
or what is known in the education literature as a “notional machine” (i.e., a student-accessible
presentation of the semantics) [du Boulay et al. 1999; Krishnamurthi and Fisler 2019; Sorva 2012b,
2013]. In fact, we do have a notional machine called the Stacker that accompanies the Tutor, inspired
by earlier research showing student misconceptions about the stack’s behavior [Clements and
Krishnamurthi 2022].

As fig. 3 shows, every program is accompanied by a button labeled “COPY as program”, which puts
it in the clipboard in a form that can be directly pasted and run in the Stacker. However, the version
of the Stacker used in these studies ran inside DrRacket, which creates friction: students need to
copy the program, perhaps launch DrRacket, then paste and run it. We suspect that students made
little use of it except when required to. A new version of the Stacker (https://smol-tutor.xyz/stacker/)
runs entirely in the browser and is linked to directly from the Tutor, which hopefully reduces
considerable friction.

Other Uses for Misinterpreters. Another idea we are toying with is the following. Once we believe
the student has sufficiently fixed their understanding of a misconception, we can show them a
program stepping through a misinterpreter and have them identify a state where the correct and
incorrect semantics diverge. There may be multiple reasonable states, so we would accept any
reasonable one. This would let us assess their understanding of where they were previously wrong.
Note that checking the marked state can be done automatically, so this is an assessment that is
easy to run at scale.

Static Semantics. Our work has focused purely on the dynamic semantics of programs. We did
this because there is much less agreement (to construct a standard model) over static types: once
we go beyond the simply-typed lambda calculus, even basic user-defined data structures introduce
questions such as structural versus nominal equality. Nevertheless, it would be very interesting
to study these questions for types and other static semantics as well. The closest work we know
of is [Crichton et al. 2023], which examines ways in which learners misunderstand Rust’s static
semantics (and its consequences for dynamic behavior also). It does not use mis-typecheckers, but
instead reles on notional machines.
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The State-Aliasing-Function Triangle. Our problematic programs hardly include any “advanced”
programming features: there are no threads, asynchrony, sophisticated type systems, ownership,
inversion of control, etc. Indeed, many of those features typically build on an understanding of these
basics (e.g., it is hard to make sense of ownership [Clarke et al. 1998] without a good understanding
of this triangle). But many populations seem to struggle even with this, which may explain why
concepts like ownership are considered hard [Crichton et al. 2023].
It is worth noting that we find problems even without all three components, as Section 5.2

shows! Nevertheless, we think it would be useful for curricula to focus on achieving mastery of this
triangle. This may require a deep revision of widely accepted pedagogy. For instance, it is common
to explain variables as “boxes”. But if taken seriously by a learner, this metaphor may cause more
harm than good. As prior research [Grover and Basu 2017; Hermans et al. 2018; Putnam et al. 1986]
shows, students expect that a variable can then contain more than one value, removing one makes
the other accessible, etc. That research has not explored aliasing, but the metaphor may affect that
too. A box is a closed object, so a (mutable) value put “into” it clearly can’t be modified by another
“box” (variable)—i.e., it not only doesn’t explain but is antithetical to aliasing.

Terminology. It is common to teach programming using the terms “call-by-value” and “call-by-
reference”. The reader will note that we instead have three ByRef misconceptions.

The emphasis on “calling” suggests that the semantics is associated only with calls. That leaves
open what happens when one simply binds a variable. In a reasonable language (and definitionally,
in SMoL), the behavior is exactly the same: the formal parameter can be viewed as a binding to the
value of the actual. But students often form inconsistent views because the “call” terminology breaks
this deep similarity. We therefore recommend that languages in general use the term bind-by-, to
emphasize the underlying semantic unity of these syntactically different mechanisms.
We feel that further confusion is caused by terms like “pass” and “return”. We often vocalize

the call (f x) as “passing x to f”; saying “passing the value of x to f” is a mouthful. But is it then
surprising that students think x is being aliased? Similarly, consider a statement like return y (in
Python syntax). Of course, semanticists understand that it is the value of y, not y itself, that is being
returned. Nevertheless, it is not surprising if this also results in assumptions that y is either aliased
or that it has escaped from the function (leading to an interpretation of dynamic scope). We believe
there is a need for significant research to investigate these kinds of effects, which are similar to but
not strictly the same as “vernacular misconceptions” [National Research Council 1997].

DATA-AVAILABILITY STATEMENT

The software that supports sections 6 to 9 and 11 is available on the ACMDL [Lu and Krishnamurthi
2024].
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