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1 INTRODUCTION
Around 2006, several groups of researchers proposed ways to integrate dynamic typing and static

typing, notably gradual typing [Siek and Taha 2006], hybrid typing [Knowles and Flanagan 2010],

migratory typing [Tobin-Hochstadt and Felleisen 2006], and multi-language interoperability [Gray

et al. 2005; Matthews and Findler 2007]. Researchers usually define the semantics of gradually

typed languages by translation to an intermediate language with casts, such as the blame calculus

[Wadler and Findler 2009] and other cast calculi [Siek et al. 2009]. Unfortunately, straightforward

implementations of casts on higher-order values (functions, objects, etc.) impose significant runtime

overheads that can change the asymptotic space complexity of a program [Herman et al. 2010].

There are several known space-efficient cast representations, with various strengths and weaknesses

[Garcia 2013; García-Pérez et al. 2014; Kuhlenschmidt et al. 2018; Siek et al. 2015; Siek and Garcia

2012; Siek and Wadler 2010]. The current state of the art includes

• threesomes [Garcia 2013; Siek and Wadler 2010],

• supercoercions [Garcia 2013], and

• coercions in normal form [Siek et al. 2015; Siek and Garcia 2012].

These systems compress casts using a compose operator. Threesomes and supercoercions are good

for mechanized metatheory because their compose operators are structurally recursive, making

them easy to define in a proof assistant such as Agda. In contrast, the coercions in normal form

have compose operators that are not structurally recursive, which makes it more difficult to define

in Agda, requiring what amounts to an explicit proof of termination. On the other hand, coercions

in normal form are easier to understand than threesomes (with a strange labeled bottom type), and

supercoercions (10 different kinds).
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This paper presents a new cast representation, named hypercoercions, that is good for both

mechanizedmetatheory and good for implementation. The composition operator for hypercoercions

is defined by structural recursion and hypercoercions are suggestive of a bit-level representation

that minimizes the need for pointers and fits all first-order casts into 64 bits. We present two flavors

of hypercoercions to support the two blame tracking strategies from the literature: D and UD [Siek

et al. 2009]. With the D strategy, only down casts (casts from ⋆ to some other types) are subject to

blame. With the UD strategy, however, some up casts are also blamable. We are interested in the D

blame tracking strategy because it comes with a more straightforward notion of safe cast compared

to UD [Siek et al. 2009], which is why D was chosen in the Grift compiler [Kuhlenschmidt et al.

2018]. We are also interested in UD because it plays a prominent role in the gradual typing literature

[Wadler and Findler 2009]. The UD hypercoercions were inspired by the supercoercions of Garcia

[2013] (hence the name) and the D hypercoercions were inspired by the normal forms of Siek and

Garcia [2012]. The semantics of casts can be lazy or eager [Siek et al. 2009]. In this paper, we focus

on lazy cast strategies because we suspect that they are more efficient than eager strategies and

because New et al. [2019] show that the eager strategies are incompatible with η-equivalence of
functions.

Of course, an alternative cast representation must be proved correct. This paper presents steps

toward a general framework for proving equivalence of cast calculi and, in particular, proves that an

abstract machine using Lazy D hypercoercions is equivalent to an abstract machine using standard

Lazy D casts [Siek et al. 2009]. We conjecture that the framework can be generalized to Lazy UD

and that it can be applied to coercions in normal form, threesomes, and supercoercions.

To summarize, the primary contributions of this paper are:

• hypercoercions, a new cast representation, which has a structurally recursive composition

and a memory representation more compact than space-efficient coercions.

• a framework in Agda for proving the correctness of Lazy D cast representations.

• a formal proof that Lazy D hypercoercions respect the semantics of the Lazy D cast calculus.

In Section 2 we review cast calculi and coercions. We present hypercoercions in Section 3. We

present a framework for proving the correctness of Lazy D cast representations in Section 4 and

use it to prove the correctness of Lazy D hypercoercions in Section 5.

2 BACKGROUND
In this section, we first review lazy cast calculi (Section 2.1), where we present an abstract machine

that is employed in our framework (Section 4). Then we review coercions and their normal forms

(Section 2.2), which motivates and inspires the design of hypercoercions (Section 3).

2.1 Cast Calculi
Syntax and Static Semantics. The syntax and static semantics are the same for the Lazy D and

Lazy UD cast calculi. They are reviewed in Fig. 1. As usual, the important features are the cast

expressions, e ⟨T1 ⇒
l T2⟩, which are responsible for runtime type checking, and blame expressions,

blame l , that raise errors. Polarities of blame labels is not treated but are straightforward to

incorporate. The syntax and static semantics is the same as that of Siek et al. [2009] except for a

few minor exceptions:

• We add sum, product, and unit types.

• We separate types into those with a type constructor at the top, the pretypes (Unit, functions,
products, and sums), versus the dynamic type ⋆ (a.k.a. Dyn or ?).
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Syntax

Types T , S ::= ⋆ | P
Pre-types P ::= Unit | T � T | T ×T | T +T
Terms e ::= x | unit | λT→Tx .e | (e e) | consT×T e e | fst e | snd e

| inlT+T e | inrT+T e | case e e e | e ⟨T ⇒l T ⟩ | blame l

Consistency T1 ∼ T2

⋆ ∼ ⋆ ⋆ ∼ P P ∼ ⋆

Unit ∼ Unit

S1 ∼ S2 T1 ∼ T2

S1 → T1 ∼ S2 → T2

S1 ∼ S2 T1 ∼ T2

S1 ×T1 ∼ S2 ×T2

S1 ∼ S2 T1 ∼ T2

S1 +T1 ∼ S2 +T2

Term typing Γ ⊢ e : T

. . .
Γ ⊢ e : T1 T1 ∼ T2

Γ ⊢ e ⟨T1 ⇒
l T2⟩ : T2 Γ ⊢ blame l : T

Fig. 1. Syntax and static semantics of the cast calculi.

• We annotate the type of many expressions explicitly because we refer to them in the dynamic

semantics. These expressions include cons expressions, left injections, right injections, and

lambda abstractions.

As usual, the source T1 and target types T2 of a cast e ⟨T1 ⇒l T2⟩ are required to be consistent,

written T1 ∼ T2. The consistency relation is standard and defined in Fig. 1.

Dynamic Semantics. The dynamic semantics of a cast calculus is typically defined with a reduction

semantics. Here we use a CEK machine [Felleisen and Friedman 1986] instead because the first

author is more familiar with CEK machines and believes that a CEK machine is more convenient

to use for the space-efficient semantics in Section 4.2 (a major point of space-efficiency is about

compressing continuations). So using an abstract machine for the cast calculi in this section makes

it easier to prove the correctness of the space-efficient machines. Of course, one should prove that

the abstract machine presented here is equivalent to the standard reduction semantics for cast

calculi, but we have not yet done so.

Fig. 3 defines the transition relation of the CEK machine and Fig. 2 gives a grammar for machine

states s , including a definition of values v and value typing. The transitions involving casts are

highlighted in red and described in more detail below. The other transitions are standard for a

CEK machine for an extended simply typed lambda calculus. Recall that CEK machines involve

two kinds of transitions, (1) those that dive further into an expression (looking for a redex) and

push an entry onto the continuation, and (2) those that return a value to the current continuation

and possibly perform a computation. Corresponding to (1) and (2), the machine state is either in

an evaluating ⟨e, E,κ⟩ or continuing ⟨v,κ⟩ configuration, respectively. Additionally, there is the
Halt o configuration, where the machine halts with an observable (o). Observables include all
value constructors, blame, and dyn, as in Siek and Garcia [2012]. The function converting values to

observables (observe(v) = o) is defined in the obvious way.

Let v range over values. A value is either the unit, a function, a pair, a left injection, a right

injection, or a casted value. Value typing rules restrict the casts in casted values. If the cast is between

pre-types, source and target types must have the same type constructor at the top (P1 ⌣ P2). If
the cast is from a pre-type to the dynamic type, the pre-type must be injectable. The definition of

3
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Machine state and other runtime data structures

Environments E ::= a partial function {⟨x ,v⟩, . . . }
Values v ::= unit | ⟨λx .e, E⟩ | cons v v | inl v | inr v | v ⟨c⟩
Casts c ::= T ⇒l T
Injectable types (Lazy D) I ::= P
Injectable types (Lazy UD) I ::= Unit | ⋆ � ⋆ | ⋆×⋆ | ⋆+⋆
Observables o ::= dyn | unit | fun | cons | inl | inr | blame l
Cast results r ::= succ v | fail l
States s ::= ⟨e, E,κ⟩ | ⟨v,κ⟩ | Halt o
Continuations κ ::= stop | [consT×T □ ⟨e, E⟩]κ | [consT×T v □]κ | [inlT+T □]κ

| [inrT+T □]κ | [□ ⟨e, E⟩]κ | [v □]κ | [fst □]κ
| [snd □]κ | [case □ ⟨e, E⟩ ⟨e, E⟩]κ | [case v □ ⟨e, E⟩]κ
| [case v v □]κ | [□⟨c⟩]κ

Shallow-consistency T ⌣ T

⋆⌣ ⋆ ⋆⌣ P P ⌣⋆

Unit⌣ Unit T11 → T12 ⌣ T21 → T22 T11 ×T12 ⌣ T21 ×T22 T11 +T1 ⌣ S2 +T2

Value typing v : T

. . .
v : I

v ⟨I ⇒l ⋆⟩ : ⋆

v : P1 P1 ⌣ P2

v ⟨P1 ⇒
l P2⟩ : P2

Fig. 2. Definition of machine state and auxiliary data structures.

injectable types depends on blame strategies: for the Lazy D strategy, every pre-type is injectable;

for the Lazy UD strategy, a pre-types is injectable if all its sub-parts are the dynamic type.

The transition relation s 7−→X s is parameterized over applyCast to allow for the differences

between D and UD. When evaluating a cast expression, the machine moves the cast to the continu-

ation and evaluates the inner expression. To apply a casted function, the machine first casts v1 (the
operand), then applies v2 (the underlying function) to the casted operand, and then finally casts

the return value. To take out the first (resp. second) part of a casted pair, the machine firstly takes

out the first (resp. second) part of v , the underlying pair, and cast the result. To case split a casted

injection, the machine moves the cast from the injection to continuations functions. To cast a value,

the machine invokes applyCast on the value. If the cast succeeds (succ v ′
), the machine returns

the result to the next continuation. If the cast fails (fail l ), the machine halts with the blame label.

The reflexive transitive closure of reduction (s 7−→∗
X

s) and evaluation (eval§(e)) are stan-

dard [Felleisen and Flatt 2007].

Definition 2.1 (Lazy D CEK Machine). The Lazy D CEK machine, written D, is the CEK machine

of Fig. 3 using the applyCast for Lazy D defined in Fig. 4. We write the transition relations of this

machine as s 7−→D s and s 7−→∗
D
s and write the evaluation function as evalD(e) = o.

We conjecture that D agrees with the Lazy D cast calculus of Siek et al. [2009].

Proposition 2.2 (D is deterministic). If s1 7−→D s2 and s1 7−→D s3 then s2 = s3.

Next, we define the CEK Machine for Lazy UD. The only difference with respect to Lazy D is

in the definition of the applyCast function, in which a cast whose source or target is the dynamic

4
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Transition s 7−→X s

⟨e ⟨T1 ⇒
l T2⟩, E,κ⟩ 7−→X ⟨e, E, [□⟨T1 ⇒

l T2⟩]κ⟩
⟨x , E,κ⟩ 7−→X ⟨E(x),κ⟩

⟨unit, E,κ⟩ 7−→X ⟨unit,κ⟩
⟨λT1→T2x .e, E,κ⟩ 7−→X ⟨⟨λx .e, E⟩,κ⟩

⟨consT1×T2 e1 e2, E,κ⟩ 7−→X ⟨e1, E, [cons
T1×T2 □ ⟨e2, E⟩]κ⟩

⟨inlT1+T2 e, E,κ⟩ 7−→X ⟨e, E, [inlT1+T2 □]κ⟩
⟨inlT1+T2 e, E,κ⟩ 7−→X ⟨e, E, [inrT1+T2 □]κ⟩

⟨(e1 e2), E,κ⟩ 7−→X ⟨e1, E, [□ ⟨e2, E⟩]κ⟩
⟨fst e, E,κ⟩ 7−→X ⟨e, E, [fst □]κ⟩
⟨snd e, E,κ⟩ 7−→X ⟨e, E, [snd □]κ⟩

⟨case e1 e2 e3, E,κ⟩ 7−→X ⟨e1, E, [case □ ⟨e2, E⟩ ⟨e3, E⟩]κ⟩
⟨blame l , E,κ⟩ 7−→X Halt (blame l)

⟨v1, [cons
T1×T2 □ ⟨e2, E⟩]κ⟩ 7−→X ⟨e2, E, [cons

T1×T2 v1 □]κ⟩
⟨v2, [cons

T1×T2 v1 □]κ⟩ 7−→X ⟨cons v1 v2,κ⟩
⟨v, [inlT1+T2 □]κ⟩ 7−→X ⟨inl v,κ⟩
⟨v, [inrT1+T2 □]κ⟩ 7−→X ⟨inr v,κ⟩
⟨v1, [□ ⟨e2, E⟩]κ⟩ 7−→X ⟨e2, E, [v1 □]κ⟩

⟨v2, [(⟨λx .e, E⟩) □]κ⟩ 7−→X ⟨e, E[x := v2],κ⟩
⟨v1, [v2⟨T1 � T2 ⇒

l T3 � T4⟩ □]κ⟩ 7−→X ⟨v1, [□⟨T3 ⇒
l T1⟩][v2 □][□⟨T2 ⇒

l T4⟩]κ⟩
⟨cons v1 v2, [fst □]κ⟩ 7−→X ⟨v1,κ⟩

⟨v ⟨T1 ×T2 ⇒
l T3 ×T4⟩, [fst □]κ⟩ 7−→X ⟨v, [fst □][□⟨T1 ⇒

l T3⟩]κ⟩
⟨cons v1 v2, [snd □]κ⟩ 7−→X ⟨v2,κ⟩

⟨v ⟨T1 ×T2 ⇒
l T3 ×T4⟩, [snd □]κ⟩ 7−→X ⟨v, [snd □][□⟨T2 ⇒

l T4⟩]κ⟩
⟨v1, [case □ ⟨e2, E⟩ ⟨e3, E⟩]κ⟩ 7−→X ⟨e2, E, [case v1 □ ⟨e3, E⟩]κ⟩

⟨v2, [case v1 □ ⟨e3, E⟩]κ⟩ 7−→X ⟨e3, E, [case v1 v2 □]κ⟩
⟨v3, [case (inl v) v2 □]κ⟩ 7−→X ⟨v, [v2 □]κ⟩
⟨v3, [case (inr v) v2 □]κ⟩ 7−→X ⟨v, [v3 □]κ⟩

⟨v3, [case v ⟨T1 +T2 ⇒
l T3 +T4⟩ v2 □]κ⟩ 7−→X ⟨v ′

3
, [case v v ′

2
□]κ⟩

where κ : T
and v2′ = v2⟨T3 � T ⇒l T1 � T ⟩
and v3′ = v3⟨T4 � T ⇒l T2 � T ⟩

⟨v, [□⟨c⟩]κ⟩ 7−→X

{
⟨v ′,κ⟩ if applyCast(v, c) = succ v ′

Halt (blame l) if applyCast(v, c) = fail l

⟨v, stop⟩ 7−→X Halt observe(v)

Evaluation evalX(e) = o

⟨e, ∅, stop⟩ 7−→∗
X
Halt o

evalX(e) = o

Fig. 3. Dynamic semantics of the cast calculi as a CEK machine. The transitions that involve casts are
highlighted in red.

5

75



WGT20, January 25, 2020, New Orleans Kuang-Chen Lu, Jeremy G. Siek, and Andre Kuhlenschmidt

applyCast(v, c) = r

applyCast(v,⋆⇒l ⋆) = succ v
applyCast(v ⟨P1 ⇒

l1 ⋆⟩,⋆⇒l2 P2) = applyCast(v, P1 ⇒
l2 P2)

applyCast(v, P ⇒l ⋆) = succ v ⟨P ⇒l ⋆⟩

applyCast(v, P1 ⇒
l P2) = succ v ⟨P1 ⇒

l P2⟩ if P1 ⌣ P2
applyCast(v, P1 ⇒

l P2) = fail l if P1 ⌣̸ P2

Fig. 4. Definition of applyCast for Lazy D

applyCast(v, c) = r

applyCast(v,⋆⇒l ⋆) = succ v
applyCast(v, P ⇒l ⋆) = succ v ⟨P ⇒l I ⟩⟨I ⇒l ⋆⟩ if I ∼ P , I , P
applyCast(v,⋆⇒l P) = succ v ⟨⋆⇒l I ⟩⟨I ⇒l P⟩ if I ∼ P , I , P

applyCast(v ⟨I ⇒l ⋆⟩,⋆⇒l I ) = succ v
applyCast(v ⟨I1 ⇒l ⋆⟩,⋆⇒l I2) = fail l if I1 , I2

applyCast(v, P1 ⇒l P2) = succ v ⟨P1 ⇒
l P2⟩ if P1 ⌣ P2

Fig. 5. Definition of applyCast for Lazy UD.

Injectable types (Lazy D) I ::= T � T | Unit
Injectable types (Lazy UD) I ::= ⋆ � ⋆ | Unit
Coercions c ::= I ! | I?l | ι | ⊥l | c; c | c � c
normal coercions ĉ ::= ĉ � ĉ | I?l ; ĉ � ĉ | ĉ � ĉ; I ! | I?l ; ĉ � ĉ; I ! | I?l ;⊥l

| ι | I?l | I ! | I?l ; I ! | ⊥l

Fig. 6. Syntax of coercions and normal forms à la Siek and Garcia [2012].

type ⋆ is always split into two casts that go through an injectable type, that is, a type in which all

sub-components are the dynamic type, such as ⋆→ ⋆.

Definition 2.3 (Lazy UD CEK Machine). The Lazy UD CEK machine, written UD, is the CEK

machine of Fig. 3 using the applyCast for Lazy UD defined in Fig. 5. We write the transition relations

of this machine as s 7−→UD s and s 7−→∗
UD

s and write the evaluation function as evalUD(e) = o.

We conjecture thatUD agrees with the Lazy UD cast calculus of Siek et al. [2009].

Proposition 2.4 (UD is deterministic). If s1 7−→D s2 and s1 7−→UD s3 then s2 = s3.

2.2 Coercions and Normal Forms
In this section, we review the coercions [Henglein 1994; Herman et al. 2010] and the normal

form of Siek and Garcia [2012] to motivate the design of hypercoercions. We omit sum types and

product types in this section because Siek and Garcia [2012] did not discuss them. We assume a

basic familiarity with coercions, and suggest that readers unfamiliar with coercions to familiarize

themselves with Siek and Garcia [2012] and Siek et al. [2015].

Fig. 6 reviews the grammar for coercions, written c . To review, an injection I ! takes a value from
an injectable type I to type ⋆. An injectable type is simply a type that can be cast directly to and

6
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Syntax of Hypercoercions

Injectable types (Lazy D) I ::= P
Injectable types (Lazy UD) I ::= Unit | ⋆ � ⋆ | ⋆×⋆ | ⋆+⋆

Hypercoercions c ::= id⋆ | h
m↷ t

Heads h ::= ϵ | ?l

Middles m ::= Unit | c � c | c × c | c + c
Tails t ::= ϵ | ! | ⊥l

Hypercoercion typing c : T =⇒ T

id⋆ : ⋆ =⇒ ⋆

h : T1 =⇒ P1 m : P1 =⇒ P2 t : P2 =⇒ T2

h
m↷ t : T1 =⇒ T2

Head typing h : T =⇒ P

ϵ : P =⇒ P ?
l
: ⋆ =⇒ I

Middle typing m : T =⇒ T

Unit : Unit =⇒ Unit

c1 : T3 =⇒ T1 c2 : T2 =⇒ T4

c1 � c2 : T1 � T2 =⇒ T3 � T4
c1 : T1 =⇒ T3 c2 : T2 =⇒ T4

c1 × c2 : T1 ×T2 =⇒ T3 ×T4

c1 : T1 =⇒ T3 c2 : T2 =⇒ T4

c1 + c2 : T1 +T2 =⇒ T3 +T4

Tail typing t : P =⇒ T

ϵ : P =⇒ P ! : I =⇒ ⋆ ⊥l
: P =⇒ T

Fig. 7. Definition of hypercoercions (HC)

from⋆. The definition of injectable types depends on the blame strategy. With Lazy D, all pre-types

are injectable. With Lazy UD, only ⋆ � ⋆ and Unit are injectable. A projection I?l takes a value
from type ⋆ to type I , or halts the program and blames l if the value is of a different type. The
coercion ι is the identity, ⊥l

is the coercion that always fails and blames l , and (c1; c2) applies c1
and then c2 in sequence. The function coercion c1 � c2 applies c1 to the argument of a function

and c2 to the return value.

Coercions come with a reduction relation so it is natural to ask about their normal forms. Fig. 6

defines the syntax of coercion in normal form, written ĉ . Conceptually, a coercion in normal form

has three parts, all of which are optional. It may start with a projection I?l , followed by a function

coercion, and then concluded with an injection I ! or a failure ⊥l
. While this is a simple idea, there

are 10 clauses in the definition for ĉ!

3 DEFINITION OF HYPERCOERCIONS
This section presents our first contribution, the definition of hypercoercions. The design of hy-

percoercions is motivated by the observation that a normal coercion has at most three parts.

Hypercoercions make this structure explicit: a hypercoercion c is either id⋆, the identity cast for⋆,
or it contains three parts: a head, middle, and tail, as defined in Fig. 7.

• The head h is either a projection or the no-op,

7
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• the middlem involves coercions that preserve a type constructor, i.e., coercions between

function, pair, sum types, and unit types, and

• the tail t is either an injection, a failure, or the no-op.

There is a close correspondence between middle coercions and type constructors. We generalize

shallow-consistency to middlesm ⌣m in the obvious way.

Subsection 3.1 defines the id , seq, and cast functions that construct Lazy D hypercoercions.

Subsection 3.2 defines Lazy UD counterparts. The functions that apply hypercoercions to values are

defined later in Section 5, after we introduce the framework and its new space-efficient definition

of values in Section 4.

3.1 Lazy D Hypercoercions
Fig. 8 defines the functions id , seq, and cast that construct Lazy D hypercoercions. We use these

functions to satisfy the Cast abstract data type defined in Section 4. Fig. 8 also defines some auxiliary

functions.

The seq operator is defined in terms of coercion composition, which is the key to compressing

coercions and maintaining space-efficiency. A composition operator for coercions typically requires

the target type of the first coercion to match the source type of the second. However, it is useful to

relax this restriction for the D blame tracking strategy. We shall need optional blame labels, written

ℓ , that range over ϵ or l . The label is mandatory when the target type of the first coercion does not

match the source type of the second. Then we write the composition of hypercoercions as c1 #ℓ c2.
When both c1 and c2 are id⋆, their composition is also id⋆. If the head of c2 is a projection, the
result is c2. Otherwise, we need a label to build the projection. Since the head of c2 is the no-op, its
source type must be a pretype. Thus we know ℓ must be a label and we put it in the projection.

When c1 ends with a failure, the composition is c1 itself. In all the remaining cases, c1 does not
end with a failure. Whenm1 andm2 have different top constructors (m1 ⌣̸ m2), the result is a

failure coercion, which needs a label. When c2 starts with a projection, we blame the projection

for casting a value to a shallowly inconsistent type. When c2 starts with the no-op, we know ℓ
must be a label, which is blamed for composing shallowly inconsistent hypercoercions. The last

two cases composem1 andm2 with the auxiliary functionm #ℓ m, which assumes its inputs have

the same top constructor. The definition ofm #ℓ m is a straightforward structural recursion. Going

back to the last two cases of c1 #ℓ c2. When c2 starts with a projection, we do not know whether

the target type ofm1 matches the source ofm2. So we use the l in the projection to compose the

middlesm1 #l m2. When c2 starts with the no-op, we compose the middles using ℓ.
The definitions of id(T ) and cast(T1, l ,T2) are straightforward, although cast(T1, l ,T2) is unusual

in its use of id and composition.

A proof of correctness for hypercoercions (in Section 4.3) relies on the following two basic

properties of hypercoercions.

Proposition 3.1 (Lazy D Hypercoercions Form a Monoid). For all c : T1 =⇒ T2, c1 : T1 =⇒ T2,
c2 : T2 =⇒ T3, and c3 : T3 =⇒ T4,

(1) seq(id(T1), c) = c ,
(2) seq(c, id(T2)) = c , and
(3) seq(seq(c1, c2), c3) = seq(c1, seq(c2, c3)).

Proof. Part (1) and (2) are by induction on c . Part (3) is by induction on c2 and case analysis on

c1 then c3. □

Proposition 3.2 (Lazy D Identity Casts). For all T and l , cast(T , l ,T ) = id(T )

Proof. By induction on T . □
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Optional labels ℓ ::= ϵ | l

Composition of hypercoercions c #ℓ c = c

id⋆ #ℓ id⋆ = id⋆

id⋆ #ℓ ?
l ′ m↷ t = ?

l ′ m↷ t

id⋆ #l ϵ
m↷ t = ?

l m↷ t

h
m↷ ⊥l ′ #ℓ c = h

m↷ ⊥l ′

h
m↷ t #ℓ id⋆ = h

m↷! if ∀l .t , ⊥l

h1
m1↷ t1 #ℓ ?

l m2↷ t2 = h1
m1↷ ⊥l

ifm1 ⌣̸m2 and ∀l .t1 , ⊥l

h1
m1↷ t1 #l ϵ

m2↷ t2 = h1
m1↷ ⊥l

ifm1 ⌣̸m2 and ∀l .t1 , ⊥l

h1
m1↷ t1 #ℓ ?

l m2↷ t2 = h1
m1#lm2↷ t2 ifm1 ⌣m2 and ∀l .t1 , ⊥l

h1
m1↷ t1 #ℓ ϵ

m2↷ t2 = h1
m1#ℓm2↷ t2 ifm1 ⌣m2 and ∀l .t1 , ⊥l

Composition of middles m #ℓ m =m

Unit #ℓ Unit = Unit
c1 � c2 #ℓ c3 � c4 = c3 #ℓ c1 � c2 #ℓ c4
c1 × c2 #ℓ c3 × c4 = c1 #ℓ c3 × c2 #ℓ c4
c1 + c2 #ℓ c3 + c4 = c1 #ℓ c3 + c2 #ℓ c4

seq(c, c) = c

seq(c1, c2) = c1 #ϵ c2

id(P) =m

id(Unit) = Unit
id(T1 � T2) = id(T1) � id(T2)
id(T1 ×T2) = id(T1) × id(T2)
id(T1 +T2) = id(T1) + id(T2)

id(T ) = c

id(⋆) = id⋆

id(P) = ϵ
id (P )
↷ ϵ

cast(T , l ,T ) = c

cast(T1, l ,T2) = id(T1) #l id(T2)

Fig. 8. Lazy D Hypercoercions

3.2 Lazy UD Hypercoercions
Hypercoercions for the UD blame tracking strategy have the same syntax as for D (Fig. 7), but the

definitions of id , cast , and seq, differ from D. Again, the seq operator (Figure 9) is defined in terms

of composition, but here composition c1 # c2 makes the usual assumption that the target type of c1
matches the source type of c2. The definition of composition for UD is particularly straightforward.

9
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Composition of hypercoercions c # c = c

c # id⋆ = c

id⋆ # h2
m2↷ t2 = h2

m2↷ t2

h1
m1↷ ϵ # ϵ

m2↷ t2 = h1
m1#m2↷ t2

h1
m1↷! # ?

l m2↷ t2 =

{
h1

m1#m2↷ t2 ifm1 ⌣m2

h1
m1↷ ⊥l

otherwise

h1
m1↷ ⊥l # h2

m2↷ t2 = h1
m1↷ ⊥l

Composition of middles m #m =m

Unit # Unit = Unit
c → d # c ′ → d ′ = (c ′ # c) → (d # d ′)

c × d # c ′ × d ′ = (c # c ′) × (d # d ′)

c + d # c ′ + d ′ = (c # c ′) + (d # d ′)

Shallow consistency of middles m ⌣m

Unit⌣ Unit (c → d)⌣ (c ′ → d ′) (c × d)⌣ (c ′ × d ′) (c + d)⌣ (c ′ + d ′)

seq(c, c) = c

seq(c1, c2) = c1 # c2

id(P) =m

id(Unit) = Unit
id(T1 � T2) = id(T1) � id(T2)
id(T1 ×T2) = id(T1) × id(T2)
id(T1 +T2) = id(T1) + id(T2)

id(T ) = c

id(⋆) = id⋆

id(P) = ϵ
id (P )
↷ ϵ

Fig. 9. Lazy UD Hypercoercions

The first two lines say that id⋆ acts as the identity on both the left and right. The third line handles

the case when both the tail of c1 and the head of c2 are no-ops, in which case the middles typesm1

andm2 are composed via an auxiliary composition operator. This compose operator for middle

coercions assumes that its inputs are shallowly consistent. The fourth line handles the important

case when the tail of c1 is an injection and the head of c2 is a projection. If the two middle coercions

are shallowly consistent, then they can be composed. If not, the tail of the result is a failure coercion

with the projection’s label. The last line handles the case when the tail of c1 is a failure, in which

case the result of composition is c1.
The definition of id is straightforward (Figure 9) .

Proposition 3.3 (Lazy UD Hypercoercions Form a Monoid). For all c : T1 =⇒ T2, c1 : T1 =⇒
T2, c2 : T2 =⇒ T3, and c3 : T3 =⇒ T4,

(1) seq(id(T1), c) = c ,

10
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castToDyn(P , l) = c

castToDyn(⋆, l) = id⋆

castToDyn(P , l) = ϵ
m↷!

wherem = castToInj(P , l , ground(P))

castFromDyn(P , l) = c

castFromDyn(⋆, l) = id⋆

castFromDyn(P , l) = ?
l m↷ ϵ
wherem = castFromInj(ground(P), l , P)

castToInj(P , l , I ) =m

castToInj(Unit, l , Unit) = Unit
castToInj(T1 → T2, l ,⋆→ ⋆) = castFromDyn(T1, l) → castToDyn(T2, l)
castToInj(T1 ×T2, l ,⋆×⋆) = castToDyn(T1, l) × castToDyn(T2, l)
castToInj(T1 +T2, l ,⋆+⋆) = castToDyn(T1, l) + castToDyn(T2, l)

castFromInj(I , l , P) =m

castFromInj(Unit, l , Unit) = Unit
castFromInj(⋆→ ⋆, l ,T1 → T2) = castToDyn(T1, l) → castFromDyn(T2, l)
castFromInj(⋆×⋆, l ,T1 ×T2) = castFromDyn(T1, l) × castFromDyn(T2, l)
castFromInj(⋆+⋆, l ,T1 +T2) = castFromDyn(T1, l) + castFromDyn(T2, l)

cast(T , l ,T ) = c

cast(⋆, l ,T2) = castFromDyn(T2, l)
cast(T1, l ,⋆) = castToDyn(T1, l)

cast(Unit, l , Unit) = ϵ
Unit↷ ϵ

cast(T1 → T2, l ,T3 → T4) = ϵ
c1→c2↷ ϵ where c1 = cast(T3, l ,T1)

and c2 = cast(T2, l ,T4)

cast(T1 ×T2, l ,T3 ×T4) = ϵ
c1×c2↷ ϵ where c1 = cast(T1, l ,T3)

and c2 = cast(T2, l ,T4)

cast(T1 +T2, l ,T3 +T4) = ϵ
c1+c2↷ ϵ where c1 = cast(T1, l ,T3)

and c2 = cast(T2, l ,T4)

Fig. 10. cast and its auxiliary functions for Lazy UD.

(2) seq(c, id(T2)) = c , and
(3) seq(seq(c1, c2), c3) = seq(c1, seq(c2, c3)).

Proof. See the Agda proof at the following URL:

https://github.com/jsiek/gradual-typing-in-agda/blob/master/HyperCoercions.agda

□

The cast function is defined in Figure 10. Prior presentations of this function do not use aux-

iliary functions, as we do here. The reason that we introduce the auxiliary functions castToDyn,
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castFromDyn, castToInj, and castFromInj, is to ensure that each of them is structurally recursive,

which makes them straightforward to define in Agda.

Proposition 3.4 (Lazy UD Identity Casts). For all T and l , cast(T , l ,T ) = id(T )

Proof. By induction on T . □

3.3 Compact Representation of Hypercoercions
Hypercoercions enable a bit-level representation that is particularly compact for identity coercions

and coercions that project from base types or inject to base types. (Here Unit is the only base type,

but in a real language the base types would include integers, Booleans, etc.) We conjecture that

such coercions occur more frequently than the more complex coercions (e.g. between function

types), especially because such coercions appear in the leaves of complex coercions.

Futhermore, values of base types are often stored in CPU registers, so it would be nice for

coercions on base types to also fit in registers, that is, in 64 bits, so that applying a coercion to

a value of base type would not require access to main memory, which is an order of magnitude

slower than accessing registers on a modern CPU. Coercions involving non-base types, such as

function types, may be arbitrarily deep, so in those cases, the hypercoercion representation has to

be a pointer to a heap-allocated structure.

Here is a sketch for the bit-level representation for hypercoercions.

• 1 bit to differentiate between id⋆ and three-part coercions.

• 1 bit to differentiate between middle coercions of base type versus non-base type.

• If the middle is of non-base type, then 61 bits represent a pointer to a heap-allocated structure.

Heap allocated structures are usually 8-byte aligned, so there are 3 unused bits in a pointer.

• If the middle is of base types, then the remaining 62 bits are used to represent the head (25

bits), middle (11 bits), and tail (26 bits).

– The head requires 1 bit to differentiate between ϵ and ?
l
and then 24 bits could be used for

the label l .
– The middle would use 11 bits to differentiate all the base types.

– The tail requires 2 bits to differentiate between ϵ , !, and ⊥l
, and could use 24 bits for the

label l .
The bits for blame labels represent an index into a table of blame information. In the event

that a program requires too many blame labels, then the implementation can fallback to

using the heap-allocated structure for more coercions.

4 A FRAMEWORK FOR PROVING CORRECTNESS OF CAST REPRESENTATIONS
This section presents our second contribution, a framework for proving the correctness of cast

representations, especially space-efficient ones. Section 5 applies this framework to prove the

correctness of the Lazy D hypercoercions.

The framework includes an abstract data type named Cast ADT (Section 4.1), and a CEK ma-

chine S(C) that is parameterized over Cast ADTs (Section 4.2). This machine is space-efficient

provided that the Cast ADT implementation performs compression. We conjecture that all cast

representations defined in the literature are instances of this ADT. The framework is available at

the following URL:

https://github.com/LuKC1024/hypercoercion-and-framework-wgt2020/tree/master/Proof

In Section 4.3 we prove that, for any instance C of the Cast ADT, if C satisfies a more refined

abstract data type for Lazy D casts, then S(C) is equivalent to D, that is,

evalS(C)(e) = o if and only if evalD(e) = o
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We conjecture that all of the cast representations in the literature for Lazy D (supercoercions,

coercions in normal form, threesomes) are instances of the Lazy D Cast ADT. We are working on a

similar theorem for Lazy UD cast representations.

We then apply this framework to Lazy D hypercoercions H (Section 5), where we show that H is

an instance of the Lazy D Cast ADT, and therefore

evalS(H )(e) = o if and only if evalD(e) = o

Before turning to the definition of the abstract data types, we first give the definition of values

and cast results used by the S(C), as they are mentioned in the definition of the ADTs. The DynI (v)
stands for values that are cast to the dynamic type, as in Wadler and Findler [2009].

Definition 4.1 (Values and cast results for the S(C) machine).

Values v ::= unit | ⟨λx . e, c, c, E⟩ | cons v ⟨c⟩ v ⟨c⟩ | inl v ⟨c⟩ | inr v ⟨c⟩ | DynI (v)
Cast results r ::= succ v | fail l
Environments E ::= a partial function {⟨x ,v⟩, . . . }

Let v range over values. In X we have one value constructor for all casted values. In S(C),
however, we do not have this generic value constructor, instead, we push casts into the ordinary

values. Thus non-casted values in X correspond to values in S(C) where casts are identities. For
instance, (cons v1 v2) corresponds to (cons v ′

1
⟨id(T1)⟩ v

′
2
⟨id(T2)⟩).

Cast results (r ) and environments (E) are the same as for X. Value typing (v : T ) is defined in the

obvious way.

4.1 The Cast Abstract Data Types
The Cast Abstract Data Type, defined below, captures the set of operators that a cast representation

C must provide for it to be used with the S(C) machine. The first three operators enable S(C) to
construct casts so we call them cast constructors. The fourth and last operator enables S(C) to apply
casts to values.

Definition 4.2 (Cast Abstract Data Type (Cast ADT)). A cast abstract data type is a setCast , which
is indexed by two types, with four operators:

id(T ) = c constructs an identity cast from a type

seq(c, c) = c composes two casts

cast(T , l ,T ) = c constructs a cast from a source type, a label, and a target type

applyCast(v, c) = r applies a cast to a value, producing a cast result

We use the syntax c : T1 =⇒ T2 to mean c is in the set Cast T1 T2 and we say “c is from T1 to T2”.

Next, we define the Lazy D Cast ADT, which captures the further requirements that are needed

for the theorem that establishes equivalence to D. Property (1) below states that id(T ) acts as the
identity function. Property (2) states that seq(c, c) acts as a sequence of casts. Properties (3) through
(11) state that cast(T1, l ,T2) acts like the Lazy D applyCast for X (Fig. 4).

Definition 4.3 (Lazy D Cast ADT). A Cast is a Lazy D Cast if:

(1) If v : T then applyCast(v, id(T )) = succ v
(2) If v : T1 and c1 : T1 =⇒ T2 and c2 : T2 =⇒ T3

then applyCast(v, seq(c1, c2)) = applyCast(v, c1) ≫ λv ′.applyCast(v ′, c2)
where

succ v ≫ f = f (v)
fail l ≫ f = fail l

(3) If v : T1 and T1 ⌣̸ T2, then applyCast(v, cast(T1, l ,T2)) = fail l

13

83



WGT20, January 25, 2020, New Orleans Kuang-Chen Lu, Jeremy G. Siek, and Andre Kuhlenschmidt

(4) If v : ⋆, then applyCast(v, cast(⋆, l ,⋆)) = succ v
(5) If v : P , then applyCast(DynP (v), cast(⋆, l , P

′)) = applyCast(v, cast(P , l , P ′))

(6) If v : P , then applyCast(v, cast(P , l ,⋆)) = succ (DynP (v))
(7) If v : Unit, then applyCast(v, cast(Unit, l , Unit)) = succ v
(8) If (⟨λx . e, c1, c2, E⟩) : T1 � T2, then

applyCast(⟨λx . e, c1, c2, E⟩, cast(T1 � T2, l ,T3 � T4))
= succ (⟨λx . e, seq(cast(T3, l ,T1), c1), seq(c2, cast(T2, l ,T4)), E⟩)

(9) If (cons v1⟨c1⟩ v2⟨c2⟩) : T1 ×T2, then
applyCast(cons v1⟨c1⟩ v2⟨c2⟩, cast(T1 ×T2, l ,T3 ×T4))
= succ (cons v1⟨seq(c1, cast(T1, l ,T3))⟩ v2⟨seq(c2, cast(T2, l ,T4))⟩)

(10) If (inl v ⟨c⟩) : T1 +T2, then
applyCast(inl v ⟨c⟩, cast(T1 +T2, l ,T3 +T4)) = succ (inl v ⟨seq(c, cast(T1, l ,T3))⟩)

(11) If (inr v ⟨c⟩) : T1 +T2, then
applyCast(inr v ⟨c⟩, cast(T1 +T2, l ,T3 +T4)) = succ (inr v ⟨seq(c, cast(T2, l ,T4))⟩)

4.2 A Space-efficient CEK Machine
S(C) is a space-efficient CEK machine parameterized over the Cast ADT (C). The key differences

between S(C) and X are the places where casts can accumulate at runtime, that is, values and

continuations. The differences regarding values was discussed above (Definition 4.1). We define

contiuations below, with κ ranging over continuations and k ranging over pre-continuations. Pre-

continuations are like the continuations in X, but there is no constructor for casts. A continuation

is now a pre-continuation prefixed with a cast.

Definition 4.4 (Continuations for the S(C) machine).

Continuation κ ::= [□⟨c⟩]k
Pre-continuations k ::= stop | [consT×T □ ⟨e, E⟩]κ | [consT×T v □]κ | [inlT+T □]κ

| [inrT+T □]κ | [□ ⟨e, E⟩]κ | [v □]κ | [fst □]κ | [snd □]κ
| [case □ ⟨e, E⟩ ⟨e, E⟩]κ | [case v □ ⟨e, E⟩]κ | [case v v □]κ

Continuations in D have zero or more casts at the top. In S(C), however, every continuation

has exactly one cast at the top. Continuations in X that have no casts at the top correspond to

continuations in S(C) whose casts are identities. Continuations in X that have many casts at the

top correspond to continuations in S(C) where those casts are composed by seq(c, c).
Fig. 11 defines the transition relation s 7−→S(C) s . They rely on functions provided by C to work

with casts. When evaluating a cast expression, the machine extends the continuation with cast

cast(T1, l ,T2). The function ext(c,κ) composes c with the cast at the top of k by calling seq. To
construct a function, the machine fills the casts with ids. To return a value to a continuation, the

machine first applies the top cast to the value. If the application fails, the machine halts with the

blame label from the failure. Otherwise, the machine handles the pre-continuation with cont . When

the machine constructs a pair, a left injection, or a right injection, it fills the casts with id as well,

just like how it did for functions. To apply a function, the machine applies the domain cast c1 to the
operand v2, extends the continuation with the codomain cast c2, and evaluates the function body.

To take out the first part of a pair, the machine returns the first value to a continuation extended

with the first cast. Taking out the second part of a pair is similar. To case split a variant, the machine

first looks at the variant value. If the variant is a left injection, the machine composes the cast in

the left injection with the domain cast of the first continuation function, then move to a state that

will apply the new function to the value in the left injection. The case for right injections is similar.

Reflexive transitive closure of reduction (s 7−→∗
S(C)

s) and evaluation (evalS(C)(e) = o) are the

same as for X.
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Build continuation wrap(k) = κ

wrap(k) = [□⟨id(T1)⟩]k where k : T1 =⇒ T2

Extend continuation ext(c,κ) = κ

ext(c1, [□⟨c2⟩]k) = [□⟨seq(c1, c2)⟩]k

Transition s 7−→S(C) s

⟨e ⟨T1 ⇒
l T2⟩, E,κ⟩ 7−→S(C) ⟨e, E, ext(cast(T1, l ,T2),κ)⟩
⟨x , E,κ⟩ 7−→S(C) ⟨E(x),κ⟩

⟨unit, E,κ⟩ 7−→S(C) ⟨unit,κ⟩
⟨λT1→T2x .e, E,κ⟩ 7−→S(C) ⟨⟨λx . e, id(T1), id(T2), E⟩,κ⟩

⟨consT1×T2 e1 e2, E,κ⟩ 7−→S(C) ⟨e1, E,wrap([cons
T1×T2 □ ⟨e2, E⟩]κ)⟩

⟨inlT1+T2 e, E,κ⟩ 7−→S(C) ⟨e, E,wrap([inlT1+T2 □]κ)⟩
⟨inrT1+T2 e, E,κ⟩ 7−→S(C) ⟨e, E,wrap([inrT1+T2 □]κ)⟩

⟨(e1 e2), E,κ⟩ 7−→S(C) ⟨e1, E,wrap([□ ⟨e2, E⟩]κ)⟩
⟨fst e), E,κ⟩ 7−→S(C) ⟨e, E,wrap([fst □]κ)⟩
⟨snd e, E,κ⟩ 7−→S(C) ⟨e, E,wrap([snd □]κ)⟩

⟨case e1 e2 e3, E,κ⟩ 7−→S(C) ⟨e1, E,wrap([case □ ⟨e2, E⟩ ⟨e3, E⟩]κ)⟩
⟨blame l , E,κ⟩ 7−→S(C) Halt (blame l)

⟨v, [□⟨c⟩]k⟩ 7−→S(C)

{
cont(v ′,k) if applyCast(v, c) = succ v ′

Halt (blame l) if applyCast(v, c) = fail l

Apply continuation cont(k,v) = s

cont([consT1×T2 □ ⟨e2, E⟩]κ,v1) = ⟨e2, E,wrap([cons
T1×T2 v1 □]κ)⟩

cont([consT1×T2 v1 □]κ,v2) = ⟨cons v1⟨id(T1)⟩ v2⟨id(T2)⟩,κ⟩
cont([inlT1+T2 □]κ,v) = ⟨inl v ⟨id(T1)⟩,κ⟩
cont([inrT1+T2 □]κ,v) = ⟨inr v ⟨id(T2)⟩,κ⟩
cont([□ ⟨e2, E⟩]κ,v1) = ⟨e2, E,wrap([v1 □]κ)⟩

cont([(⟨λx . e, c1, c2, E⟩) □]κ,v2) =


⟨e, E[x := v ′], ext(c2,κ)⟩

if applyCast(v2, c1) = succ v ′

Halt l

if applyCast(v2, c1) = fail l

cont([fst □]κ, cons v1⟨c1⟩ v2⟨c2⟩) = ⟨v1, ext(c1,κ)⟩
cont([snd □]κ, cons v1⟨c1⟩ v2⟨c2⟩) = ⟨v2, ext(c2,κ)⟩
cont([case □ ⟨e2, E⟩ ⟨e3, E⟩]κ,v1) = ⟨e2, E,wrap([case v1 □ ⟨e3, E⟩]κ)⟩

cont([case v1 □ ⟨e3, E⟩]κ,v2) = ⟨e3, E,wrap([case v1 v2 □]κ)⟩
cont([case (inl v ⟨c⟩) (⟨λx . e, c1, c2, E⟩) □]κ,v3) = ⟨v,wrap([(⟨λx . e, seq(c, c1), c2, E⟩) □]κ)⟩
cont([case (inr v ⟨c⟩) v2 □]κ, (⟨λx . e, c1, c2, E⟩)) = ⟨v,wrap([(⟨λx . e, seq(c, c1), c2, E⟩) □]κ)⟩

cont(stop,v) = Halt observe(v)

Fig. 11. Space-efficient CEK machineS(C)
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Proposition 4.5 (S(C) is deterministic). If s1 7−→S(C) s2 and s1 7−→S(C) s3 then s2 = s3.

4.3 S(C) Is Equivalent to D, Provided C Is an Instance of the Lazy D ADT
In this section, we prove that for all C , if C is a Lazy D Cast ADT, then

evalS(C)(e) = o if and only if evalD(e) = o

The main work of the proof is in a lemma that establishes a weak bisimulation between S(C) andD.

The bisimulation goes more smoothly if we require two more properties of the cast representation:

that the casts form a monoid (the id and seq operators) and that the cast constructor is equivalent

to the identity operator when applied to an identical source and target type. However, the final

theorem does not require these two properties because we can prove 1) that S(C1) and S(C2) are

equivalent for any two Lazy D Cast ADTs C1 and C2 (Proposition 4.12), and 2) there is an instance

of the Lazy D Cast ADT, named L, that is a monoid and satisfies the two extra properties, and is

therefore equivalent to D (Lemma 4.14). So by transitivity, for any Lazy D Cast ADT C we have

evalS(C)(e) = o if and only if evalD(e) = o .

4.3.1 Weak Bisimulation between S(C) and D. We shall prove that if an instance of Cast ADTC is

Lazy D, is a monoid, and if cast(T , l ,T ) = id(T ), then there is a weak bisimulation between S(C)
and D. We define monoid as follows.

Definition 4.6 (Monoid). A Cast ADT is a monoid if for all c1 : T1 =⇒ T2, c2 : T2 =⇒ T3, and
c3 : T3 =⇒ T4,

(1) seq(id(T1), c1) = c1,
(2) seq(c1, id(T2)) = c1, and
(3) seq(seq(c1, c2), c3) = seq(c1, seq(c2, c3)).

Fig. 12 defines the bisimulation relation s1 ≈ s2, where s1 ∈ S(C) and s2 ∈ D. It is the smallest

congruence relation that also includes the pairs induced by the rules in Fig. 12. One nice aspect of

using abstract machines for this proof is that the expressions in the machine are simply related by

syntactic equality. The bisimulation relation is mutually defined on continuations, written κ ≈ κ : T ,
where T is their source type, and values, written v ≈ v : T , where T is their type. If k ≈ κ : T ,
adding an identity cast on top of k gives a related continuation. This handles the way in which

S(C) useswrap to push identity coercions onto continuations whereasD does not. We remark that

this bisimulation relation is unusual in that it uses some ADT operations in its definition, such as

id , cast , and seq, which is necessary because S(C) and the bisimulation is parameterized over the

Cast ADT. If [□⟨c⟩]k1 ≈ κ2 : T , extending the right-hand side with a cast T1 ⇒
l T2 and sequencing

cast(T1, l ,T2) with c on the left-hand side, produces related continuations. This takes care of the

difference between the transition rules for e ⟨T1 ⇒
l T2⟩ on the two machines.

The bisimulation relation for values is designed to make Lemma 4.7 true, that is, if v1 ≈ v2, then

applyCastS(C)(v1, cast(T1, l ,T2)) ≈ applyCastD(v2,T1 ⇒
l T2)

So if two values of type I are related, injecting them to ⋆ gives related values. To relate to a closure

in D, the closure in S(C) must have identities as its casts. If a closure on the left is related to a

value, we can apply equivalent casts on both sides to obtain related values. The rules for products

and sums are similar. Lemma 4.7 is used in our bisimulation proof to handle the transitions that

apply casts to values.

Lemma 4.7 (applyCast Preserves Bisimulation). Assume C implements Lazy D Cast ADT, v1 is
a value in S(C), v2 is a value in D, and v1 ≈ v2 : T1,

applyCastS(C)(v1, cast(T1, l ,T2)) ≈ applyCastD(v2,T1 ⇒
l T2)
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Γ ⊢ E ≈ E

∅ ⊢ ∅ ≈ ∅

Γ ⊢ E1 ≈ E2

v1 ≈ v2 : T

Γ,x : T ⊢ E1[x := v1] ≈ E2[x := v2]

s ≈ s

Γ ⊢ e : T
Γ ⊢ E1 ≈ E2

κ1 ≈ κ2 : T

⟨e, E1,κ1⟩ ≈ ⟨e, E2,κ2⟩ Halt o ≈ Halt o

κ ≈ κ : T

k ≈ κ : T

[□⟨id(T )⟩]k ≈ κ

[□⟨c⟩]k1 ≈ κ2 : T2

[□⟨seq(cast(T1, l ,T2), c)⟩]k1 ≈ [□⟨T1 ⇒
l T2⟩]κ2

v ≈ v : T

v1 ≈ v2 : I

DynI (v1) ≈ v2⟨I ⇒
l ⋆⟩ : ⋆

unit ≈ unit⟨Unit ⇒l Unit⟩ : Unit

Γ,x : T1 ⊢ e : T2
Γ ⊢ E1 ≈ E2

⟨λx . e, id(T1), id(T2), E1⟩ ≈ ⟨λx .e, E2⟩ : T1 � T2

⟨λx . e, c1, c2, E⟩ ≈ v2 : T1 � T2

⟨λx . e, c ′
1
, c ′

2
, E⟩ ≈ v2⟨T1 � T2 ⇒

l T3 � T4⟩ : T3 � T4

c ′
1
= seq(cast(T3, l ,T1), c1)

c ′
2
= seq(c2, cast(T2, l ,T4))

v1 ≈ v2 : T1 v3 ≈ v4 : T2

cons v1⟨id(T1)⟩ v3⟨id(T2)⟩ ≈ cons v2 v4 : T1 ×T2

cons v1⟨c1⟩ v3⟨c2⟩ ≈ v2 : T1 ×T2

cons v1⟨c
′
1
⟩ v3⟨c

′
2
⟩ ≈ v2⟨T1 ×T2 ⇒

l T3 ×T4⟩ : T3 ×T4

c ′
1
= seq(c1, cast(T1, l ,T3))

c ′
2
= seq(c2, cast(T2, l ,T4))

v1 ≈ v2 : T1

inl v1⟨id(T1)⟩ ≈ inl v2 : T1 +T2

inl v1⟨c⟩ ≈ v2 : T1 +T2 c ′ = seq(c, cast(T1, l ,T3))

inl v1⟨c
′⟩ ≈ v2⟨T1 +T2 ⇒

l T3 +T4⟩ : T3 +T4

v1 ≈ v2 : T2

inr v1⟨id(T2)⟩ ≈ inr v2 : T1 +T2

inr v1⟨c⟩ ≈ v2 : T1 +T2 c ′ = seq(c, cast(T2, l ,T4))

inr v1⟨c
′⟩ ≈ v2⟨T1 +T2 ⇒

l T3 +T4⟩ : T3 +T4

Fig. 12. Bisimulation between S(C) and D
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Proof. Case splitting whether T1 is shallowly consistent with T2. If yes, case splitting how they

are shallowly consistent. Then apply properties (3) - (11) of Lazy D Cast when applicable. □

We now come to the main lemma, the weak bisimulation between S(C) and D.

Lemma 4.8 (Weak Bisimulation between S(C) and D). If C implements Lazy D Cast ADT and
C is a monoid and cast(T , l ,T ) = id(T ) and s1 ≈ s2 then either

(1) s1 = Halt o and s2 = Halt o for some o, or
(2) s1 7−→

+
S(C)

s3 and s2 7−→+D s4 and s3 ≈ s4 for some s3 and s4

Proof. We proceed by case analysis on s1 ≈ s2.

Case
Halt o ≈ Halt o

This is case (1).

Case

Γ ⊢ e : T
Γ ⊢ E ≈ E ′

κ ≈ κ ′
: T

⟨e, E,κ⟩ ≈ ⟨e, E ′,κ ′⟩
This is case (2). By case analysis on e .

Case

v ≈ v ′
: T

κ ≈ κ ′
: T

⟨v,κ⟩ ≈ ⟨v ′,κ ′⟩
This is case (2). In this case we have the following reduction in S(C).

⟨v,κ⟩ = ⟨v, [□⟨c⟩]k⟩

7−→S(C)

{
cont(v1,k) if applyCast(v, c) = succ v1

Halt (blame l) if applyCast(v, c) = fail l

We proceed by induction on [□⟨c⟩]k ≈ κ ′
: T .

Subcase k ≈ κ ′
: T

[□⟨id(T )⟩]k ≈ κ ′
In this case, from the property (1) of Lazy D Cast ADT (Defi-

nition 4.3)

applyCast(v, c) = applyCast(v, id(T )) = succ v

Thus,

⟨v,κ⟩ = ⟨v, [□⟨id(T )⟩]k⟩ 7−→S(C) cont(v,k)

We will show shortly that if v ≈ v ′
: T and k ≈ κ ′

: T then there exists an s ′ such that

cont(v,k) ≈ s ′ and ⟨v ′,κ ′⟩ 7−→D s ′.

Subcase
[□⟨c1⟩]k1 ≈ κ ′

1
: T2

[□⟨seq(cast(T1, l ,T2), c1)⟩]k1 ≈ [□⟨T1 ⇒
l T2⟩]κ

′
1

In this case, from the property (2)

of Lazy D Cast ADT (Definition 4.3)

applyCast(v, c) = applyCast(v, seq(cast(T1, l ,T2), c1))
= applyCast(v, cast(T1, l ,T2)) ≫ λv .applyCast(v, c1)

In the D machine, we have the following reduction,

⟨v ′,k ′⟩ = ⟨v ′, [□⟨T1 ⇒
l T2⟩]κ

′
1
⟩ 7−→D

{
⟨v ′

1
,κ ′

1
⟩ if applyCast(v ′,T1 ⇒

l T2) = succ v ′
1

Halt (blame l) if applyCast(v ′,T1 ⇒
l T2) = fail l
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By Lemma 4.7, applyCast(v, cast(T1, l ,T2)) ≈ applyCast(v ′,T1 ⇒l T2). When both cast

applications fail, both machines transition to halting states with the same blame label.

When both cast applications succeed, we apply the induction hypothesis.

Now we prove the missing part: if v ≈ v ′
: T and k ≈ κ ′

: T then there exists an s ′ such that

cont(v,k) ≈ s ′ and ⟨v ′,κ ′⟩ 7−→D s ′. We proceed by case analysis on k ≈ κ ′
: T .

Many cases are trivial. The interesting cases are eliminations (e.g. function applications, pair

projections). Due to space limitation, we only illustrate the general idea with function applications:

v1 ≈ v ′
1
: T1 � T2

κ1 ≈ κ ′
1
: T2

[v1 □]κ1 ≈ [v ′
1
□]κ ′

1

We proceed by induction on the v1 ≈ v ′
1
: T1 � T2.

Case

Γ,x : T1 ⊢ e : T2
Γ ⊢ E ≈ E ′

⟨λx . e, id(T1), id(T2), E⟩ ≈ ⟨λx .e, E ′⟩ : T1 � T2

cont(v,k) = cont(v, [⟨λx . e, id(T1), id(T2), E⟩ □]κ1)
= ⟨e, E[x := v], ext(id(T2),κ1)⟩
= ⟨e, E[x := v],κ1⟩

The first step is substitution of variables. The second step is by the property (1) of Definition 4.3.

And the third and final step is by the property (1) of Definition 4.6.

⟨v ′,κ ′⟩ = ⟨v ′, [⟨λx .e, E ′⟩ □]κ ′
1
⟩

7−→D ⟨e, E ′[x := v ′],κ ′
1
⟩

Case
⟨λx . e, c3, c4, E⟩ ≈ v ′

2
: T1 � T2

⟨λx . e, c1, c2, E⟩ ≈ v ′
2
⟨T1 � T2 ⇒

l T3 � T4⟩ : T3 � T4

c1 = seq(cast(T3, l ,T1), c3)
c2 = seq(c4, cast(T2, l ,T4))

cont(v,k) = cont(v, [⟨λx . e, c1, c2, E⟩ □]κ1)

=

{
⟨e, E[x := v1], ext(c2,κ)⟩ if applyCast(v, c1) = succ v1

Halt l if applyCast(v, c1) = fail l

By property (3) of Monoid (Definition 4.6), we have

ext(c2,κ) = ext(c4, ext(cast(T2, l ,T4),κ))

By property (2) of Lazy D Cast ADT (Definition 4.3), we have

applyCast(v, c1) = applyCast(cast(T3, l ,T1),v) ≫ λv .applyCast(c3,v)

In the D side, we have the following reduction

⟨v ′,κ ′⟩ = ⟨v ′, [v ′
2
⟨T1 � T2 ⇒

l T3 � T4⟩ □]κ ′
1
⟩

7−→D ⟨v ′, [□⟨T3 ⇒
l T1⟩][v

′
2
□][□⟨T2 ⇒

l T4⟩]κ
′
1
⟩

7−→D

{
⟨v ′

3
, [v ′

2
□][□⟨T2 ⇒

l T4⟩]κ
′
1
⟩ if applyCast(v ′,T3 ⇒

l T1) = succ v ′
3

Halt (blame l) if applyCast(v ′,T3 ⇒
l T1) = fail l

By Lemma 4.7, applyCast(v, cast(T3, l ,T1)) ≈ applyCast(v ′,T3 ⇒
l T1). When both cast appli-

cations fail, both machines transition to halting states with the same blame label. When both

cast applications succeed, we apply the induction hypothesis.

□
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Corollary 4.9 (Weak Bisimulation between S(C) and D, reformulated). Assume C imple-
ments Lazy D Cast ADT and C is a monoid and cast(T , l ,T ) = id(T ), s1 ≈ s ′

1
,

(1) If s1 7−→S(C) s for some s , then s 7−→∗
S(C)

s2, and s ′1 7−→
+
D
s ′
2
, s2 ≈ s ′

2
for some s2 and s ′2.

(2) If s ′
1
7−→D s ′ for some s ′, then s ′ 7−→∗

D
s ′
2
, and s1 7−→+S(C)

s2, s2 ≈ s ′
2
for some s2 and s ′2.

(3) s1 = Halt o if and only if s ′
1
= Halt o

Proof. By applying Lemma 4.8 on s1 ≈ s ′
1
and case analysis. □

Corollary 4.10 (Correctness ofS(C)). SupposeC is an instance of the Cast ADT and the Lazy D
ADT, C is a monoid, and cast(T , l ,T ) = id(T ). If ∅ ⊢ e : T and o : T , then

evalS(C)(e) = o if and only if evalD(e) = o

Proof. By the definitions of eval , we need to show

⟨e, ∅,wrap(stop)⟩ 7−→∗
S(C)

Halt o if and only if ⟨e, ∅, stop⟩ 7−→∗
D Halt o

Obviously, the initial states are related in the bisimulation relation.

⟨e, ∅,wrap(stop)⟩ ≈ ⟨e, ∅, stop⟩

So we can generalize our goal, and prove that if s1 ≈ s ′
1

s1 7−→
∗
S(C)

Halt o if and only if s ′
1
7−→∗

D Halt o

Let us prove left to right first. We proceed by induction on s1 7−→
∗
S(C)

Halt o.

• s1 = Halt o implies s ′
1
= Halt o by Lemma 4.8.

• If s1 7−→S(C) s and s 7−→∗
S(C)

Halt o for some s , by Lemma 4.8, there exists s2 and s
′
2
such

that s1 7−→
+
S(C)

s2 and s
′
1
7−→+

D
s ′
2
and s2 ≈ s ′

2
. The transition s1 7−→

+
S(C)

s2 must be a prefix

of s1 7−→
+
S(C)

Halt o because S(C) is deterministic (Proposition 4.5) and halting states are

stuck. So we can apply our induction hypothesis on s2 ≈ s ′
2

The other direction is similar. □

4.3.2 S(C1) and S(C2) are equivalent ifC1 andC2 are Lazy D. We prove the equivalence among two

S(C) machines with a strong bisimulation. The bisimulation relation is the smallest congruence

relation that also includes the rules below.

cast1(T1, l ,T2) ≈ cast2(T1, l ,T2) id1(T ) ≈ id2(T )

c1 ≈ c2 c3 ≈ c4

seq1(c1, c3) ≈ seq2(c2, c4)

Lemma 4.11 (Strong Bisimulation among S(·)). Assume C1 and C2 implements Lazy D Cast
ADT s1 ∈ S(C1), s2 ∈ S(C2), s1 ≈ s2,
(1) If s1 = Halt o then s2 = Halt o
(2) If s2 = Halt o then s1 = Halt o
(3) If s1 7−→S(C1) s3 then s2 7−→S(C2) s4 and s3 ≈ s4 for some s4
(4) If s2 7−→S(C2) s4 then s1 7−→S(C1) s3 and s3 ≈ s4 for some s3

Proof. This proof is straightforward. The key ideas are undoing uses of seq with the property

(2) of Lazy D Cast ADT, and handling all uses of cast with properties (3)-(11). □

Proposition 4.12 (Eqivalence of Two Lazy D Cast ADTs). Assume C1 and C2 implements
Lazy D Cast ADT. If ∅ ⊢ e : T and o : T then

evalS(C1)(e) = o if and only if evalS(C2)(e) = o
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Proof. Without loss of generality, assume evalS(C1)(e) = o and prove evalS(C2)(e) = o.
By the definition of evalS(C), we know

⟨e, ∅,wrap(stop)⟩ 7−→∗
S(C1)

Halt o

By induction on this reduction sequence and Lemma 4.11, we have

⟨e, ∅,wrap(stop)⟩ 7−→∗
S(C2)

Halt o

that is, evalS(C2)(e) = o □

4.3.3 The L instance of the Lazy D Cast ADT. The L cast representation is defined in Fig. 13. Casts

in L are lists of steps (s), where every step is like a cast in D. The function applyCast applies steps
from left to right. Steps are restricted by its typing rule such that its source and target are different.

This restriction is necessary to show cast(T , l ,T ) = id(T ). With this representation of casts, the

operator id produces an empty list of steps and seq appends two lists of steps.

Proposition 4.13 (L Properties).

(1) L is an instance of the Lazy D ADT
(2) L is a monoid
(3) cast(T , l ,T ) = id(T )

Proof. Part (1) is straightforward because property (1) and (2) are trivially true and because

appS effectively repeats property (3) - (11). Part (2) is true because lists are known to be a monoid

with respect to append. Part (3) follows immediately from the definition of cast(T , l ,T ) □

Lemma 4.14 (L is Correct wrt. D). If ∅ ⊢ e : T and o : T , then

evalS(L)(e) = o if and only if evalD(e) = o

Proof. Immediately from Correctness of S(C) (Corollary 4.10) and Properties of L (Proposi-

tion 4.13). □

4.3.4 Correctness of S(C).

Theorem 4.15 (S(C) is Correct wrt. D). SupposeC is a Lazy D Cast ADT. If ∅ ⊢ e : T and o : T
then

evalS(C)(e) = o if and only if evalD(e) = o

Proof. Immediately from Equivalence of Lazy D Cast ADTs (Lemma 4.12) and L is Correct wrt.

D (Lemma 4.14) □

5 CORRECTNESS PROOF OF LAZY D HYPERCOERCIONS
In this section, we prove Lazy D hypercoercions are correct. First, we define applyCast(v, c) to
make it an instance of Cast ADT, then prove that it is also Lazy D, and finally apply Theorem 4.15

to finish the proof.

Fig. 14 defines applyCast(v, c) for Lazy D hypercoercions. Applying the identity cast for the

dynamic type succeeds immediately. If the value is injected and the cast is not the identity cast, then

applyCast projects the value and relies on applyMiddle to ensure that value is shallow consistent

with target type of the head. Regardless of whether or not the value is projected, applyCast applies
the middle, then apply the tail if the middle succeeds. We denote by r ≫ f to mean that if r is
succ v , the result is f (v), otherwise, the result is the failure. In the definition ofapplyMiddle(v, ℓ,m),

we generalize shallow-consistency to compare middles and values (v ⌣ m) in the obvious way.

When a value is shallowly inconsistent from the middle, it is the result of projecting a value that

was shallowly inconsistent with the expected type of the projection in the head. Thus, a blame label
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Syntax

Casts c ::= [] | s :: c
Steps s ::= T ⇒l T

Steps Typing s : T =⇒ T

T1 , T2

T1 ⇒
l T2 : T1 =⇒ T2

Casts typing c : T =⇒ T

[] : T =⇒ T

s : T1 =⇒ T2 c : T2 =⇒ T3

s :: c : T1 =⇒ T3

seq(c, c) = c

seq([], c) = c
seq(s :: c ′, c) = s :: seq(c ′, c)

id(T ) = c

id(T ) = []

cast(T , l ,T )

cast(T1, l ,T2) = [] if T1 = T2
cast(T1, l ,T2) = T1 ⇒

l T2 :: [] if T1 , T2

appS(v, s) = r

appS(v,⋆⇒l ⋆) = succ v
appS(v ⟨P1 ⇒

l1 ⋆⟩,⋆⇒l2 P2) = succ v if P1 = P2
appS(v ⟨P1 ⇒

l1 ⋆⟩,⋆⇒l2 P2) = appS(v, P1 ⇒
l2 P2) if P1 , P2

appS(v, P ⇒l ⋆) = succ DynP (v)
appS(v, Unit ⇒l Unit) = succ v

appS(⟨λx . e, c1, c2, E⟩,T1 � T2 ⇒
l T3 � T4) = succ (⟨λx .b, c ′

1
, c ′

2
, E⟩)

where c ′
1
= seq(cast(T3, l ,T1), c1)

and c ′
2
= seq(c2, cast(T2, l ,T4))

appS(cons v1⟨c1⟩ v2⟨c2⟩,T1 ×T2 ⇒
l T3 ×T4 = succ (cons v1⟨c

′
1
⟩ v2⟨c

′
2
⟩)

where c ′
1
= seq(c1, cast(T1, l ,T3))

and c ′
2
= seq(c2, cast(T2, l ,T4))

appS(inl v ⟨c⟩,T1 +T2 ⇒
l T3 +T4) = succ (inl v ⟨seq(c, cast(T1, l ,T3))⟩)

appS(inr v ⟨c⟩,T1 +T2 ⇒
l T3 +T4) = succ (inr v ⟨seq(c, cast(T2, l ,T4))⟩)

appS(v, P1 ⇒
l P2) = fail l if P1 ⌣̸ P2

applyCast(v, c) = r

applyCast(v, []) = succ v
applyCast(v, s :: c) = applyStep(v, s) ≫ λv .applyCast(v, c)

Fig. 13. The L Lazy D Cast ADT
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applyCast(v, c) = r

applyCast(v, id⋆, ) = succ v

applyCast(DynP (v), ?
l m↷ t) = applyMiddle(v, l ,m) ≫ λv .applyTail(t ,v)

applyCast(v, ϵ
m↷ t) = applyMiddle(v, ϵ,m) ≫ λv .applyTail(t ,v)

applyMiddle(v, ℓ,m) = r

applyMiddle(unit, ℓ, Unit) = succ unit
applyMiddle(⟨λx . e, c1, c2, E⟩, ℓ, c3 � c4) = succ (⟨λx . e, (c3 #ℓ c1), (c2 #ℓ c4), E⟩)

applyMiddle(cons v1⟨c1⟩ v2⟨c2⟩, ℓ, c3 × c4) = succ (cons v1⟨(c1 #ℓ c3)⟩ v2⟨(c2 #ℓ c4)⟩)
applyMiddle(inl v ⟨c1⟩, ℓ, c3 + c4) = succ (inl v ⟨(c1 #ℓ c3)⟩)
applyMiddle(inr v ⟨c2⟩, ℓ, c3 + c4) = succ (inr v ⟨(c2 #ℓ c4)⟩)

applyMiddle(v, l ,m) = fail l if v ⌣̸m

applyTail(v, t) = r

applyTail(v,⊥l ) = fail l
applyTail(v, ϵ) = succ v
applyTail(v, !) = succ (DynP (v))

Fig. 14. Lazy D hypercoercion’s applyCast

l must have been pass in as ℓ and is to blame. Finally if a failure in applyMiddle has not occurred
then applyTail(v, t) interprets the tail, t , to the appropriate cast of the value v .

Lemma 5.1 (Lazy D Hypercoercion is a Lazy D Cast ADT).

Proof. See the Agda proof at the following URL:

https://github.com/LuKC1024/hypercoercion-and-framework-wgt2020/tree/master/Proof □

Theorem 5.2 (Lazy D Hypercoercion Respect D). If ∅ ⊢ e : T and o : T

evalS(H )(e) = o if and only if evalD(e) = o

Proof. Immediately from that every Lazy D Cast ADT is correct ( Theorem 4.15) and that Lazy

D hypercoercion is a Lazy D Cast ADT (Lemma 5.1). Alternatively, from Lemma 4.10, Lemma 5.1,

Proposition 3.1, and Proposition 3.2 □

6 CONCLUSION
In this paper, we presented a new cast representation, hypercoercions, in two flavors, Lazy D and

Lazy UD. Hypercoercions have a structurally recursive composition operator and have a more

compact memory representation in comparison to coercions in normal form.

We also present steps toward the first framework for proving the correctness of cast represen-

tations. The framework includes abstract data types for cast representations (Cast ADT and its

refinement Lazy D Cast ADT), a parameterized abstract machine S(C), and a theorem which states

that S(C) is equivalent to D when C is a Lazy D Cast ADT. We conjecture that Lazy D threesomes

and Lazy D coercions in normal form are instances of the Lazy D Cast ADT.

Finally, we proved that Lazy D hypercoercions (H ) is a Lazy D Cast ADT. By using our framework,

we showed that it is a correct cast representation because S(H ) is equivalent to D.
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