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Modern programming languages share a core set of linguistic concepts, including muta-

ble variables, mutable data structures, and their interactions with scope and higher-order

functions. Despite their ubiquity, students often struggle with these topics. How can we

identify and effectively correct misconceptions about these cross-language concepts?

This dissertation presents systems designed to identify and correct such misconceptions

in a multilingual setting, along with a formal classification of misconceptions distilled from

studies with these systems. At the core of this work are: (1) the idea that formally defining

misconceptions allows for more effective identification and correction, and (2) a self-guided

tutoring system that diagnoses and addresses misconceptions. Grounded in established edu-

cational strategies, this tutor has been tested in multiple settings. My data show that (a) the

misconceptions addressed are widespread and (b) the tutor improves student understanding

on some topics and does not hinder learning on others.

Additionally, I introduce a program-tracing tool that explains programming language

behavior with the rigor of formal semantics while addressing usability concerns. This tool

supports the tutoring system in correcting misconceptions and appears to be valuable in its

right.
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PREFACE

Shriram observed that modern programming languages share a common semantic core,

which he called SMoL—the Standard Model of Languages. I resonate with this idea—

learning a new language often feels like “just learning the new syntax”. Many programmers

likely share this intuition, as evidenced by the abundance of resources that teach one language

by comparing its syntax to another.

When I joined Shriram’s group in 2020, I became increasingly interested in grounding

my PL research more firmly in human concerns. Programming languages are mathematical

artifacts, created with arbitrary design choices. How, then, do we determine which PL

research directions are valuable? Since this question first crossed my mind, my answer has

always been: humans. This led me to focus on teaching the semantic core, which eventually

became the central theme of my PhD.

This dissertation represents the culmination of my efforts in this direction: a structured

study of programming misconceptions, a tracing tool designed to make language behavior

more transparent, and an automated tutor aimed at diagnosing and correcting misunder-

standings.

All work in this dissertation was done jointly with my advisor. Throughout this disserta-

tion, ‘we’ and ‘us’ include the reader to foster a shared perspective, while ‘I’ and ‘me’ refer

to both my advisor and me.
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CHAPTER 1

INTRODUCTION

1.1 The Standard Model of Languages (SMoL)

A large number of widely used modern programming languages behave in a common way:

• Variables are lexically scoped.

• Expressions are evaluated eagerly and sequentially (per thread).

• Mutable data structures (e.g., arrays) are aliased (at least by default).

• Mutable variables are not aliased (at least by default).

• Some higher-order values (e.g., functions and objects) are first-class.

• First-class higher-order values can close over (variable) bindings.

This semantic core can be seen in languages from “object-oriented” languages like C# and

Java, to “scripting” languages like JavaScript, Python, and Ruby, to “functional” languages

like the ML and Lisp families. Of course, there are sometimes restrictions (e.g., Java has
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restrictions on closures [42]) and deviation (such as the documented semantic oddities of

JavaScript and Python; see Sections 8.2.1 and 10.8 for further discussion). Still, this semantic

core bridges many syntaxes, and understanding it helps when transferring knowledge from

old languages to new ones. In recognition of this deep commonality, in this work I choose to

call this the Standard Model of Languages (SMoL).

1.2 Why Should You Care About Teaching SMoL?

Unfortunately, this combination of features appears to be non-trivial to understand.

CS-major students and even professional programmers do not understand these behaviors

well. In Section 5.2, I discuss how multiple researchers, across different countries and various

post-secondary educational contexts, have studied students’ difficulties with scope and state.

They consistently find that even advanced students struggle with brief programs involving

SMoL topics. Similar confusions are also common on platforms like StackOverflow [28, 84,

86].

Not understanding SMoL can lead to costly consequences: Related bugs can easily take

hours to fix; Students not understanding SMoL cannot possibly understand advanced top-

ics (e.g., asynchronous functions, generators, threads, and ownership), which often rely on

combination of these behaviors.

Given the prevalence and persistence of SMoL misconceptions—and the steep cost of

holding them—it is crucial to better align human understanding with common language

behavior. While language design improvements might reduce the likelihood of SMoL mis-

understandings, the pervasiveness of these behaviors makes it unlikely that programming

languages will undergo substantial changes. Therefore, it is essential to teach SMoL effec-

tively and efficiently.
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1.3 Thesis Statement and Contributions

The thesis of my dissertation is:

Misconceptions about SMoL behavior1 are widespread, but a tutoring system

with carefully designed questions and feedback can effectively correct them.

At the heart of this dissertation is the SMoL Tutor (Chapter 4), an interactive, self-paced

tutorial designed to correct misunderstandings about SMoL. The Tutor draws on concepts

from cognitive and educational psychology to explicitly identify and address misconceptions.

Chapter 5 presents the misconceptions targeted by the Tutor and describes how this

collection was developed.

The Tutor incorporates Stacker (Chapter 6), a tool for tracing the execution of SMoL

programs. The Stacker is also useful as a standalone visualization tool.

Since SMoL is a cross-language concept, teaching it effectively requires presenting es-

sentially the same program in multiple languages. If students are exposed to only one,

they may fixate on its syntax, mistakenly believe their learning is confined to it, or strug-

gle to transfer concepts across languages. To support multilingual learning, I introduce the

SMoL Language (Chapter 3), along with the SMoL Translator (Chapter 8), a tool that

converts SMoL programs into several commonly used programming languages. Both the

Tutor and Stacker rely on the Language and Translator to provide multilingual support. To

distinguish between SMoL (Section 1.1) and the SMoL Language, I sometimes refer to the

former as SMoL Characteristics.

Chapter 7 introduces misinterpreters, a novel way of representing misconceptions that

makes working with them much more scalable.
1I use the term “behavior” to refer to the meaning of programs in terms of the answers they produce. A

more standard term would be “semantics.” However, the term “semantics tutor” might mislead some readers
into thinking it teaches people to read or write a formal semantics, such as an introduction to “Greek”
notation. Because that is not the kind of tutor I am describing, I use the term “behavior” instead to avoid
confusion.
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The remaining chapters introduce relevant terminology (Chapter 2), describe the study

populations involved in the user studies of the Tutor and the Stacker (Chapter 9), and

provide an overall discussion (Chapter 10) and conclusion (Chapter 11).

An artifact containing all the aforementioned systems is available at:

https://cs.brown.edu/research/pubs/theses/phd/2025/Kuang-Chen_Lu.zip
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CHAPTER 2

BACKGROUND

This chapter provides background information and discusses related work that informs

this dissertation. It covers key concepts in programming languages, tracing, rules of program

behavior, misconceptions, notional machines, tutoring systems, and pedagogic techniques.

2.1 Misconceptions and Mistakes

A misconception is an incorrect mental model, whereas a mistake is an incorrect action.

Mistakes do not necessarily indicate misconceptions, as they can occur for various incidental

reasons (e.g., a typo or a misclick). However, if students consistently make the same kind of

mistake or provide reasoning that suggests a flawed understanding, the students likely have

a misconception.

This dissertation addresses misconceptions about programming language behavior by

identifying, defining, and correcting them.
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2.2 Tutoring Systems

There is an extensive body of literature on tutoring systems ([85] is a quality survey), and

indeed whole conferences are dedicated to them. I draw on this literature. In particular, it is

common in the literature to talk about a “two-loop” architecture [85] where the outer loop

iterates through “tasks” (i.e., educational activities) and the inner loop iterates through

user interface (UI) events within a task. I follow the same structure in the SMoL Tutor

(Chapter 4).

Many tutoring systems focus on teaching programming (such as the well-known and

heavily studied LISP Tutor [4]), and in the process undoubtedly address some program

behavior misconceptions. The SMoL Tutor differs in a notable way: it does not try to teach

programming per se. Instead, it assumes a basic programming background and focuses

entirely on program behavior misconceptions and correcting them. I am not aware of a

tutoring system (for programming concepts) that has this specific design.

2.3 Programming Language Concepts

In the Programming Languages community, semantics refers to the formal description of

meaning.

Some languages have a non-trivial static phase, such as the type systems found in lan-

guages like Java, OCaml, and TypeScript. In this dissertation, I focus solely on the dynamics

of programming languages—that is, how programs are executed [35]—and do not study their

statics. Chapter 10 discusses potential future work that could extend my system to also teach

statics.

States and Transitions There are multiple ways to define dynamics. A commonly used

approach is structural dynamics (also known as structural operational semantics or small-

step semantics), which describes execution as a sequence of states and transitions between
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them [35]. Dynamics describe how programs generally execute. Therefore, structural dy-

namics describe rules of forming states and transitions rather than their concrete instances.

This dissertation, for the purpose of teaching dynamics, presents a tool (Chapter 6) that

explains how program executes by presenting states and transitions.

Interepreters Another approach to define dynamics is interpreters, which are a program

that executes other programs.

This dissertation presents several interpreters for defining the correct dynamics as well

as incorrect dynamics (Chapter 7).

2.4 Tracing and Program Trace Visualization Tools

A trace is a representation of a program’s execution, showing its states and the transitions

(or steps) between them. The process of producing a trace is called tracing.

While tracing can be done manually, many programming language communities provide

tools that automate the process. These tools typically offer interactive visualizations of

program traces and are commonly referred to as Program Visualization Tools (e.g., the tool

by Cai et al. [7], Online Python Tutor [33], UUhistle [75], VILLE [63], and Jeliot 3 [45]).

Although widely used, this term is not always precise. I refer to these tools—along with

the Stacker (introduced in Chapter 6)—as Program Trace Visualization Tools. As Rajala

et al. [63] noted, program visualization tools do not necessarily depict program traces (italic

in original):

Unlike dynamic visualization tools …, static tools don’t visualize program exe-

cution step by step, but instead focus on visualizing program structure and the

relations between program components.

Comparing dynamic tools that visualize execution traces to static visualization tools is not

particularly meaningful, as they represent fundamentally different types of information.
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2.5 Notional Machines

The term “Notional Machine” was introduced by Du Boulay, O’Shea, and Monk [20],

who defined it as “the idealized model of the computer implied by the constructs of the

programming language”. Later, Du Boulay [19] described it as “the general properties of

the [physical] machine that one is learning to control” in the context of students learning

programming.

Early definitions suggest that a notional machine focuses on semantics. However, later

work blurs the distinction between semantics and other aspects of physical machine behavior.

For example, Du Boulay [19] includes confusion about terminal displays as a misunderstand-

ing of the notional machine, which extends beyond semantics:

…it is often unclear to a new user whether the information on the terminal

screen is a record of prior interactions between the user and the computer or a

window onto some part of the machine’s innards.

More recent works (summarized in [41, 64, 73]) typically restrict the term to semantics.

This dissertation focuses specifically on the semantics aspect of notional machines.

Duran, Sorva, and Seppälä [21] introduces a related concept, Rules of Program Behav-

ior (RPBs), defined as “written statements about how computer programs of a particular

kind behave when executed”. RPBs specify learning objectives. The authors note that the

term “notional machine” is often used inconsistently, with many papers labeled as notional

machine research actually focusing on tracing, RPBs, or misconceptions.

To avoid confusion, this dissertation minimizes the use of the term “notional machine”

and instead uses more specific terms (e.g., “program trace visualization tools” and “RPBs”)

where applicable.

8



2.6 Pedagogic Techniques

The Tutor (Chapter 4) is firmly grounded in one technique from cognitive and educational

psychology. The fundamental problem is: how do you tackle a misconception? One approach

is to present “only the right answer”, for fear that discussing the wrong conception might

actually reinforce it. Instead, there is a body of literature starting from [57] that presents

a theory of conceptual change, at whose heart is the refutation text. A refutation text

tackles the misconception directly, discussing and providing a refutation for the incorrect

idea. Several studies (see [67, 79] for summary) have shown their effectiveness in multiple

other domains.

The Tutor’s content structure is also influenced by work on case comparisons (which

draws analogies between examples). [3] suggests that asking (rather than not asking) stu-

dents to find similarities between cases, and providing principles after the comparisons

(rather than before or not at all), are associated with better learning outcomes.
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CHAPTER 3

THE SMOL LANGUAGE

This chapter presents the SMoL Language, a programming language designed to illustrate

SMoL Characteristics. Rather than reusing an existing language, I designed a new one

because, although SMoL is a representative model, no existing language fully aligns with it

(Section 1.1).

The syntax of the Language is presented in Figure 3.1, where

• s represents statements,

• d represents definitions,

• e represents expressions,

• c represents constants (i.e., numbers and booleans),

• x represents identifiers (variables), and

• o represents primitive operators.

The ... symbol indicates that the preceding syntactic unit may be repeated zero or more

times. For example, a conditional can have zero or more branches, each consisting of a
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Figure 3.1: The syntax of the SMoL Language

s ::= d
| e

d ::= (defvar x e) ; ; v a r i a b l e d e f i n i t i o n
| (deffun (x x ...) body) ; ; f u n c t i o n d e f i n i t i o n

e ::= c
| x
| (set! x e) ; ; v a r i a b l e mutat ion
| (and e ...)
| (or e ...)
| (if e e e)
| (cond [e body] ... [else body]) ; ; c o n d i t i o n a l
| (cond [e body] ...) ; ; c o n d i t i o n a l w/o ‘ e l s e '
| (begin e ...) ; ; t h e comma ( , ) ope ra to r
| (lambda (x ...) body) ; ; anonymous f u n c t i o n
| (let ([x e] ...) body) ; ; l e t e x p r e s s i o n
| (let* ([x e] ...) body) ; ; n e s t ed ‘ l e t '
| (letrec ([x e] ...) body) ; ; r e c u r s i v e ‘ l e t '
| (o e ...) ; ; p r i m i t i v e ope ra t i on
| (e e ...) ; ; f u n c t i o n c a l l

body ::= s ... e
program ::= s ...

Table 3.1: Primitive operators in the SMoL Language
Operator Inputs Output Meaning
+ - * / Int Int Arithmetic

< <= > >= Int × Int Bool Compare numbers
mvec Any ... Vec Make a vector

vec-len Vec Int Get the length of the vector
vec-ref Vec × Int Any Get an element

vec-set! Vec × Int × Any None Replace an element
mpair Any × Any Vec Make a 2-element vector
left Vec Any Get the first element

right Vec Any Get the second element
set-left! Vec × Any None Replace the first element

set-right! Vec × Any None Replace the second element
= Any × Any Bool Structural equality on boolean and numbers,

and pointer equality on vectors
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condition (e) and a body. For convenience, I collectively refer to programs and bodys as

blocks.

Most syntax rules in Figure 3.1 are common to modern programming languages. However,

the SMoL Language includes three types of let expressions, which are more characteristic of

Lisp-derived languages. While they are not the primary focus of this dissertation, interested

readers can refer to external resources such as Racket’s documentation for more details:

docs.racket-lang.org/reference/let.html

The parenthetical syntax in the SMoL Language originates from the course where I

conducted my earlier study. Moreover, this syntax offers several benefits:

• Presenting the same program in multiple syntaxes likely aids learning. I suspect that

incorporating additional syntaxes—especially those that differ significantly from exist-

ing ones—could further enhance this effect.

• Parenthetical syntax is easy for computers to parse, reducing the cost of developing

tools (e.g., the translator described in Section 8.1) for processing SMoL programs.

• Parenthetical syntax may be helpful when discussing scope alongside local-binding

features like let. It avoids the confusing “variable lifting” semantics found in languages

like Python [55], where the actual binding range of a variable is not always apparent

from the source code (see also posts like [55]).

The SMoL Language includes a limited set of primitive operators (Table 3.1) for working

with Booleans, numbers, and vectors. To clarify the table:

• “Any” refers to “any values”, which corresponds to the “top” type in some typed

language (e.g., Java’s Object type).

• “Vectors”, also known as arrays, are fixed-length mutable data structures.1

1“Arrays” is likely a better name, as it avoids confusion with “vectors” in mathematics and physics.

12

https://docs.racket-lang.org/reference/let.html


• “None” is equivalent to void or unit.

• The “...” symbol denotes “zero or more” arguments. For instance, the operator mvec

can take an arbitrary number of inputs.

The semantics of the SMoL Language is the SMoL Characteristics (section 1.1) plus the

following details:

• Arguments are evaluated from left to right.

• Function parameters are considered declared in the same block as function bodies.

• If a name is declared twice in one block, the program outputs an error.

• Primitive operators are not defined for non-integer numbers. Division is only defined

if the first operand is a multiple of the second operand, in which case the quotient is

returned, or if the second operand is zero, in which case division raises an error.

• Primitive vector operators expect index arguments to be within-range integers. Using

out-of-range integers as indexes triggers errors.

A definitional interpreter for the SMoL Language is provided in Appendix A.
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CHAPTER 4

SMOL TUTOR

This chapter introduces the SMoL Tutor, an interactive, self-paced tutoring system de-

signed to address SMoL misconceptions. Section 4.1 provides a guided tour of the system.

Section 4.2 summarizes the user studies conducted. Sections 4.3 to 4.5 present the results

of these studies from multiple perspectives, demonstrating the Tutor’s effectiveness in iden-

tifying and correcting misconceptions. Finally, Section 4.6 explores the design space of the

system.

4.1 A Guided Tour of SMoL Tutor

4.1.1 Choosing a Syntax

When users open the Tutor, they first encounter a dialog prompting them to select their

preferred primary syntax (Figure 4.1). The dropdown menu lists the syntaxes supported

by the SMoL Translator (Section 8.1). Changing the syntax updates the example program

accordingly. The default syntax, and whether the menu appears at all, are configurable

(Section 4.1.6).
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Figure 4.1: The SMoL Tutor window for selecting the primary syntax
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Table 4.1: SMoL Tutor topics and learning objectives
def{1-3}: variable and function definitions.

• Define “blocks”

• Evaluating an undefined variable is an error.

• Variables are lexically scoped.

• Define “scope”

• Eager and sequential evaluation.

vectors{1-3}: mutable data structures.

• Vectors can be aliased.

• Define “heap” and “heap addresses”.

• Contrast heap and variable bindings.

mutvars{1-2}: mutable variables.

• Variables are not aliased.

• Contrast variable assignments and variable definitions, and clarify how variable
mutation interacts with functions.

• Define “environments”, and contrast environments and blocks.

lambda{1-3}: first-class functions and lambda expressions.

• Functions are first-class values.

• Define “closures”, and clarify how first-class functions interact with environ-
ments.

• Define “lambda expressions”.

• Clarify the relation between function definitions and lambda expressions.
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4.1.2 Choosing a Tutorial

After selecting a syntax, users must also choose a tutorial. The Tutor covers five major

topics, listed with their abbreviated learning objectives in Table 4.1. Each topic is further

divided into 2-3 tutorials, named using labels such as def1. The intended duration for each

tutorial was 20-30 minutes, but my data show that students typically spent between 9 and

30 minutes (median). Additionally, after each topic, the Tutor provides a review tutorial

(post{1-4}) covering previously learned concepts and an experimental tutorial (refactor)

exploring a new question format (Section 4.1.4).

The learning objectives of the tutorials are detailed in Appendix C. They extend SMoL

Characteristics (Section 1.1) (e.g., detail the recursive look up of lexical scope), introduce

concepts (e.g., heap, heap addresses, and environments), and contrast similar concepts (e.g.,

“Creating a vector does not inherently create a [variable] binding”).

4.1.3 Interpreting Tasks

Each tutorial consists of a sequence of tasks, most of which are interpreting tasks. These

tasks (illustrated in Figure 4.2) begin with multiple-choice questions (MCQs) designed to

detect misconceptions.

The MCQs present programs in two syntaxes: the primary syntax, chosen through the

process described in Section 4.1.1, and a randomly selected secondary syntax, which can be

changed by clicking the black button displayed at the top right of the task.

In addition to answering the MCQs, students may be asked to justify their choices, as

shown in the figure. After selecting an answer, they receive feedback. If a student answers

incorrectly, they (a) receive an explanation addressing the misconception associated with

their choice (or a generic explanation if no specific misconception applies), (b) evaluate the

explanation by flagging if the explanation make sense to them (if it doesn’t make sense,

they can optionally provide comment), and (c) are then presented with a slightly modified
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Figure 4.2: An interpreting task in the SMoL Tutor

follow-up question.

Each interpreting task has one role in the Tutor. It can be either a warm-up task, a

teaching task, or a post-test task. Most tasks are teaching tasks. Warm-ups are designed to

be simple and for introducing new syntax. There is one warm-up for each language construct.

Post-tests are tasks in the post tutorials.

Students are not always asked for a justification. I expect writing justification can be

stressful and time-consuming for students. Therefore, the Tutor asks for justification only

occasionally, and does so at most twice in each tutorial. The Tutor might ask for justification

even when the answer is correct, but it is more likely to do so when the answer is incorrect.

The Tutor does not collect justification in warm-ups and post-tests.

A misconception-targeting explanation is always presented as a refutation text (Sec-
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tion 2.6), followed by a link to open a Stacker trace. Some explanations also include a

link to a specialized version of the Stacker that contrasts the correct trace with an incorrect

one.

The second question is deliberately designed to reinforce learning:

• The program remains semantically identical to the first but undergoes superficial

changes (e.g., variable names, constants, and operators) to prevent students from re-

lying on pattern recognition.

• Instead of multiple-choice, students must type the answer into a text box. (The Tutor

normalizes text to accommodate variations.) This is intentional. First, I wanted to

force reflection on the explanation just given, whereas with an MCQ, students could

just guess. Second, I felt that students would find typing more onerous than clicking.

In case students had just guessed on a question, my hope is that the penalty of having

to type means, on subsequent tasks, they would be more likely to pause and reflect

before choosing.

Consecutive interpreting tasks within each tutorial are presented in a randomized order.

4.1.4 Equivalence Tasks

Interpreting tasks ask students to evaluate programs. Although such tasks are commonly

used to detect misconceptions, they lack authenticity: in real programming scenarios, people

rarely evaluate programs mentally—there is usually no need, since they can simply run the

code to observe its output. By contrast, it is not uncommon for programmers to compare two

versions of code fragments during refactoring, code review, or similar activities. Equivalence

tasks are designed to simulate these situations.

In addition to being more authentic, equivalence tasks also require students to actually

read code. Unlike interpreting tasks, which involve complete programs, equivalence tasks
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Figure 4.3: An equivalence task in the SMoL Tutor
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Figure 4.4: The message displayed by the SMoL Tutor at the end of each tutorial, prompting
students to save a copy of their completed work.

focus on program fragments. As a result, students cannot simply run the code to determine

the answer, which presumably encourages deeper reflection on the semantics of the fragments.

Figure 4.3 illustrates a completed equivalence task. Each task presents an original pro-

gram fragment and a collection of alternative fragments, then asks students to select those

that “might break the code”. In the example shown, none of the alternatives break the code,

assuming the tmp variable is not otherwise used. Thus, selecting the first option is incorrect,

as indicated by the orange background. In such cases, the Tutor provides feedback: it first

lists which options should or should not have been selected, then explains the reasoning

behind the correct choices.

There are six equivalence tasks, each targeting a different aliasing misconception (Ta-

ble 5.1). They are presented in random order within the refactor tutorial.

Several prior studies have explored related ideas, but none specifically examine students’

understanding of language behavior. Izu and Mirolo [37], like my work, asked students to

judge whether program fragments were equivalent. However, their focus was on students’

understanding of program purpose, rather than the behavior of specific language constructs.

Both Gal-Ezer and Zur [29] and Krishnamurthi et al. [40] asked students to compare seman-

tically equivalent fragments—some more performant than others—to investigate students’

understanding of runtime costs. Oliveira, Keuning, and Jeuring [49] studied student-made

errors while attempting to “improve” already-correct programs. Unlike other related work,

their students could make arbitrary edits. The study revealed a wide range of misconcep-

tions, from incorrect arithmetic to improper composition of control-flow constructs.
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4.1.5 Other Components of the SMoL Tutor

The Tutor includes additional interactions to ensure a smooth learning experience:

• Each tutorial begins with a brief introduction outlining its purpose.

• Whenever a new language construct is introduced, the Tutor provides examples illus-

trating its typical usage.

• Learning objectives are presented at the end of each tutorial, for several reasons: (1)

to avoid intimidating students with technical vocabulary upfront; (2) to prevent in-

terference with students’ existing conceptions (e.g., if they already associate the word

“heap” with a different meaning); and (3) to potentially improve learning outcomes

(see, for example, [68]).

• After completing a tutorial, students are encouraged to download a PDF copy for

review (Figure 4.4). This feature was added in response to feedback from early student

users, who wanted a way to revisit the material without redoing the entire tutorial.

The Tutor also includes special tasks beyond interpreting tasks (Section 4.1.3) and equiv-

alence tasks (Section 4.1.4):

• In the vectors tutorials, students are shown programs and asked to determine their

heap content.

• Some tutorials prompt students to reflect on their interpreting tasks and summarize

their key takeaways.

• Other tutorials require students to analyze a Stacker trace and identify the trace state

that best explains why the program produces the correct output rather than an incor-

rect one.

22



4.1.6 Hosting the SMoL Tutor

Instructors can host their own copy of the SMoL Tutor. Several collaborators have done

so successfully without needing my help. When self-hosting, instructors have access to several

configuration options:

Syntax Instructors can specify the suggested primary syntax and whether it should be en-

forced. If it is enforced, the dialog window described in Section 4.1.1 won’t appear.

Available Tutorials Instructors can choose which tutorials are available to students.

Logging Instructors can insert a custom JavaScript function (or pick a predefined one) to

log Tutor data to a spreadsheet or database. Instructions are provided for logging to

a Google Sheet, and several collaborators have followed them successfully.

4.2 SMoL Tutor Versions and Studies

Multiple studies have been conducted using different versions of the SMoL Tutor. Some

versions introduced significant updates (see Section 4.2.2) that make it difficult to compare

results across versions. Therefore, this dissertation focuses on studies conducted using the

two most recent versions: “Early 2024” and “Mid 2024”.

4.2.1 Studies

All population names mentioned below are defined in Chapter 9.

The Mid 2024 Tutor was used in the PL course, which had 46 enrolled students. All

completed the Tutor.

The same version was also deployed at the Belgium, where 126 students completed it.

The Early 2024 Tutor was used at US2 (13 students) and at the Sweden (56 students).

For the Swedish population, Python was configured as the primary language.
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4.2.2 Versions

The SMoL Tutor typically receives a major update about twice a year. I refer to each

major version by its release window: “Mid 2022”, “Early 2023”, “Mid 2023”, and so on.

Minor updates—such as bug fixes, English refinements, and small tweaks to the interface or

question wording—are made throughout the year. This section focuses on major updates.

Mid 2024

Introduced equivalence tasks (Section 4.1.4).

Early 2024

Substantially revised the question sets so that each incorrect answer maps to exactly one

misconception (see Section 7.2).

Added randomization of question order (see Section 4.6.5 for a comparison with fixed

order).

Introduced a two-language display mode. Previously, the Tutor displayed programs in

only one language at a time, with a manual toggle. The new version shows programs in a

fixed primary language alongside a randomly selected secondary language. I hope this design

helps emphasize that the Tutor teaches cross-language concepts.

Added experimental support for Scala 3.

Previously, the Tutor did not require students to justify their answers. The current ver-

sion does, allowing for deeper insights into whether students genuinely hold the anticipated

misconceptions.

Mid 2023

Added language-switch buttons. Previously, the Tutor displayed programs only in the

SMoL syntax. This change aligns with the reasoning provided in Chapter 3.
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Introduced the web-based Stacker, allowing students to trace program execution by click-

ing a “Run” button. Previously, students had to copy programs into DrRacket and run them

manually, which was less convenient.

Early 2023

Made numerous incremental improvements and addressed issues in the initial prototype.

Mid 2022

The initial release.

4.3 Evaluation: Coverage of Named Misconceptions

This section addresses two questions: How many wrong answers in interpreting tasks are

associated with named misconceptions? And what patterns emerge among the remaining

answers?

4.3.1 Association with Named Misconceptions

Table 4.2 shows that students answered correctly more than half the time. (See Chapter 9

for details on each population.) In most institutions—US2 being the exception—between

75% and 80% of wrong answers were associated with a named misconception. Readers should

be cautious about interpreting the numbers for US2, as that group is much smaller than the

Table 4.2: Distribution of answers to interpreting tasks by conception type. Percentages
may not sum to 100% due to rounding.

Misconception-Associated Other Incorrect Correct
US1 (Mid 2024) 10% 2% 87%

Belgium (Mid 2024) 12% 3% 85%
US2 (Early 2024) 12% 29% 59%

Sweden (Early 2024) 17% 6% 77%
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others (13 students vs. 46–126). A Fisher’s exact test confirms that the difference between

US2 and the other populations is not statistically significant (p = 0.3329).

4.3.2 Unassociated Wrong Answers

Wrong answers not linked to a named misconception may suggest new misconceptions.

To explore this possibility, I examined a subset of the corresponding programs and students’

justifications. The subset was selected using the following procedure:

1. Compute the frequency of each wrong answer.

2. If the most frequent answer occurs at least 1.5× as often as the second-most frequent,

include it in the subset and repeat the process with the remaining answers. Otherwise,

stop.

This process was applied to each population individually. However, the selected results are

presented together, as many common wrong answers appeared across populations.

For each example below, all available student justifications are included. These are often

sparse, as students were not always asked to explain their answers (see Section 4.1.3).

(deffun (f x)

(defvar y 1)

(+ x y))

(+ (f 2) y)

Some students selected 3. Justifications included:

• I am wrong it should error because y is out of scope in print statement

• Because y is not bound in the print call

The first student likely selected the wrong answer by mistake. The second correctly noted

that y is unbound, but still selected 3—perhaps believing that unbound variables default

to 0 or are silently ignored.
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(defvar x 1)

(deffun (f)

x)

(deffun (g)

(defvar x 2)

(f))

(g)

Some students selected error. Justification:

x in f undefined

The student may have overlooked the top-level definition of x or may have believed that

functions cannot refer to variables defined outside their own block.

(defvar x 1)

(deffun (f y)

(deffun (g)

(defvar z 2)

(+ x y z))

(g))

(+ (f 3) 4)

Some students selected error. Justifications included:

• in function (+ x y z) is not defined, it is binary operation

• because definition g does not have access to y

The first justification does not seem to indicate a misconception, rather, it indicates a mis-

communication between the Tutor and the student. The second justification might indicate
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a misconception, but it is unclear to me what the misconception is due to the brevity of the

justification.

(defvar v (mvec (mvec 58 43) (mvec 43 66)))

(defvar vr (vec-ref v 1))

(vec-ref vr 0)

Some students selected 58, suggesting they treated index 1 as 0. No justification was col-

lected, as this was a warm-up task (see Section 4.1.3).

(defvar x (mvec 92 73))

(vec-set! x 0 67)

x

Some students selected 67 73 (omitting brackets) instead of the correct answer #(67 73).

Again, no justification was collected, as this was also a warm-up task.

4.4 Evaluation: How Effective is SMoL Tutor?

This section answers the question from two perspectives. If the Tutor is effective, then as

students complete more tasks, they should (1) become more likely to give the correct answer,

and (2) for each misconception, become less likely to select the corresponding incorrect

answers. Technically, only the first perspective is necessary to demonstrate effectiveness.

However, the second perspective provides especially useful insights:

• Ideally, the Tutor is effective because it helps correct misconceptions. It’s possible,

however, that students improve at giving correct answers without improving at avoiding

misconception-related wrong answers—perhaps by selecting fewer “random” incorrect

options. If this happens, the Tutor is not effective in the way we expect. The second

perspective is needed to rule out this possibility.
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Figure 4.5: Students seem more likely to give the correct answer in later tasks.

29



• The design of each Tutor task is based on the underlying misconceptions. The sec-

ond perspective provides more detailed feedback on how well the Tutor addresses each

misconception. For example, if the Tutor is generally effective except for a few mis-

conceptions, we might suspect issues with the associated programs or refutation texts.

All analyses in this section aggregate data from the four populations.

4.4.1 Convergence to Correct Answers

Figure 4.5 shows how the proportion of students who gave the correct answer changes

as they progress through each tutorial. It suggests that students improve. However, the

improvement may not be clear in every tutorial. Therefore, I performed a statistical analysis

to test for trends.

A straightforward approach would use logistic regression to model the relationship be-

tween task position and correctness. However, there are a few additional considerations:

1. As students complete more tasks, they may become more familiar with the UI. We need

to verify that improvement is due to conceptual learning rather than just learning how

to use the system.

2. The difficulty of interpreting tasks varies, and question order is randomized. If difficult

tasks tend to appear earlier for most students, this could create a misleading impression

of learning.

The first concern seems unlikely. If students were merely learning the UI, we would expect

a clear upward trend across tutorials in Figure 4.5. However, no such trend is visible. In fact,

logistic regression shows a slightly negative trend, with an effect size of −0.012 (p < 0.001).

The second concern—variation in task difficulty—remains. To address this, I compare

three models for each tutorial:

Task-Specific Performance depends only on the task. This reflects the concern.
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Position-Specific Performance depends only on task order. If this model is best, it suggests

students improve over time regardless of task content.

Task + Position Performance depends on both task and position.

To find the most plausible model, I compute and compare the Akaike Information Criterion

(AIC). Intuitively, AIC measures how well a model fits the data while penalizing model

complexity; lower values indicate a better fit. A common rule of thumb is that an AIC

difference of at least 2 is needed to consider one model clearly better than another. What I

am looking for are that the Task-Specific AIC is never clearly the best, and that the effect

of position is positive and clear (i.e., statistically significant).

Table 4.3 confirms this: the Task-Specific model is never best, and five out of eight

tutorials show a statistically significant positive trend.

The lack of improvement in def2 and def3 may be due to a ceiling effect—students

performed well from the start (Figure 4.5).

The lack of improvement in lambda2 is more interesting. This is the first tutorial

introducing higher-order functions with interesting interactions with scope. It targets the

FlatEnv and DeepClosure misconceptions. These topics are known to be difficult, so a

three-task tutorial may be too short. Given the suggestive positive trend (Table 4.3), this

tutorial may benefit from additional tasks.

Table 4.3: Students are more likely to give the correct answer in later tasks. The improvement
is clear (i.e., statistically significant) in five out of eight tutorials.

Tutorial AIC Effect of Position
Task Position Task + Position Size p-value

def2 854.37 955.55 854.66 0.082 = 0.19
def3 467.90 484.99 469.14 0.130 = 0.39

vectors2 1574.47 1632.06 1546.42 0.154 < 0.001
mutvars1 1355.31 1394.82 1240.56 0.450 < 0.001
mutvars2 748.44 765.01 742.10 0.316 < 0.01
lambda1 700.34 743.50 691.07 0.298 < 0.001
lambda2 710.42 844.40 711.73 0.093 = 0.41
lambda3 435.16 477.69 432.56 0.326 < 0.05
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Figure 4.6: Students seem to be more likely to avoid the related wrong answer in later tasks.
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Table 4.4: Students are more likely to avoid the incorrect answer in later tasks. All clear
(i.e., statistically significant) trends are improvement.

Misconception Tutorial AIC Effect of Position
Task Position T + P Size p-value

FlatEnv def2 441.47 531.40 440.80 0.248 = 0.104
FlatEnv lambda2 177.25 208.57 178.52 -0.349 = 0.392
FlatEnv lambda3 43.53 48.06 44.35 1.177 = 0.312

Lazy def3 454.40 470.10 456.23 0.064 = 0.675
DefCopyStruct vectors2 295.41 284.84 282.72 1.287 < 0.001

CallCopyStruct vectors2 332.61 330.62 332.45 0.427 = 0.144
StructCopyStruct vectors2 403.09 461.09 397.23 0.699 < 0.01

NoCircularity vectors2 390.64 367.93 363.85 1.483 < 0.001
DefByRef mutvars1 272.05 251.91 242.77 2.212 < 0.001

CallByRef mutvars1 461.52 449.64 442.57 1.084 < 0.001
StructByRef mutvars1 526.38 529.08 469.68 1.748 < 0.001
DeepClosure mutvars2 257.09 270.94 253.38 0.816 < 0.05
DeepClosure lambda2 440.18 528.34 442.17 -0.027 = 0.907
DeepClosure lambda3 261.84 264.58 261.57 0.513 = 0.137

DefOrSet mutvars2 410.19 410.19 403.31 0.710 < 0.01
FunNotVal lambda1 663.73 707.55 655.51 0.294 < 0.01
FunNotVal lambda2 353.60 364.76 349.44 0.688 < 0.05
FunNotVal lambda3 77.91 80.93 77.99 1.070 = 0.195

4.4.2 Avoiding Misconception-Related Incorrect Answers

This section evaluates the Tutor’s effectiveness from a second perspective: If the Tu-

tor is effective, then for each misconception, students should become less likely to select

misconception-related answers as they complete more tasks.

Figure 4.6 shows, for each misconception-tutorial pair, how the proportion of students

who avoided the misconception changes over time.

The analysis includes a model comparison similar to Section 4.4.1. Here, I look for a nega-

tive and statistically clear effect—meaning students are increasingly avoiding misconception-

related errors.

Table 4.4 presents the results. As expected, the Task-Specific model is never best. When

the effect of position is statistically clear, it is always positive.

The unclear trends for FlatEnv–lambda3 and FunNotVal–lambda3 are likely due
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to ceiling effects: students were already good at avoiding these misconceptions (Figure 4.6).

Ceiling effects don’t explain the other weak trends. These cases likely require further

investigation to understand how the Tutor can better address those misconception-topic

combinations.

It is also worth noting that the “T + P” models are often clearly better than the Position-

Specific model (i.e., the AIC of “T + P” is at least 2 points lower; see Section 4.4.1 for how

to interpret AIC). This suggests that students are more likely to exhibit a misconception

with some programs than others. See Section 10.2 for discussion of possible reasons.

4.5 Evaluation: What did students say about

the explanations not working for them?

As illustrated in Figure 4.2, the Tutor collects student feedback to explanations in in-

terpreting tasks. My hope was that the student feedback would be helpful for improving

the Tutor, particular on its effectiveness (Section 4.4.2). This section checks if my hope is

realistic by presenting some collected feedback.

As a case study, I investigate the feedback which most students flagged as This is not

what I thought. In the four datasets, a total of 23 students did that. The second and third

most flagged feedback each received 13 flags. The most flagged feedback corresponds to the

wrong answer 1 1 1 to the following program or a slightly different version:

(deffun (foo)

(defvar n 0)

(deffun (bar)

(set! n (+ n 1))

n)

bar)

(defvar f (foo))
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(defvar g (foo))

(f)

(g)

(f)

The slightly different version swaps the order of the last two function calls, but does not

affect the nature of the wrong answer: Either way, the wrong answer corresponds to the

DeepClosure misconception. Students were given the following explanation for why their

answer is wrong:

You are right that n is bound to 0 when bar is bound to a function. You might

think the function remembers the value 0. However, bar does not remember the

value of n. Rather, it remembers the environment and hence always refers to

the latest value of n. foo is called twice, so two environments are created. (f)

mutates the first, while (g) mutates the second. In SMoL, functions refer to the

latest values of variables defined outside their definitions.

Eight of the 23 students provide meaningful response to the follow-up question “What is

your thought? (Feel free to skip this question.)”

1. n = 0 in foo() not reset the n to 0 when the second call to f is done? When f is bound

to foo(), doesn’t this also include the ‘let n = 0’?

2. I thought calling bar() a second time would not mutate the n

3. The environment of foo resets after it returns. so the second call of f should return the

same result as the first?

4. Intuitively, I do not understand why foo is stored in f, but when f is called n is not

reset to 0.
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5. I thought n in would be rebound to 0 once f was called for a second time.

6. foo returns the function bar, it doesnt call bar

7. Find it reall confusing that when calling f you do not activate the n = 0 again

8. I still do not understand how the values are transferred between the functions and why it

is 1 2 1 instead of 1 2 3 when all three function calls should from the programs perspective

be the same. There should in my opinion be an explanation of what “nonlocal” does to

the variable. Because I assume that is what is making a difference here

In Section 4.4.2, we found that DeepClosure is one of the least corrected misconception.

The student responses provide some insights on why the misconception was not corrected

well. Students 1, 4, 5, and 7 might have a misconception different from DeepClosure.

They might believe that when f and g are called, the body of foo are re-run. I cannot make

sense out of the other responses.

4.6 The Design Space Around SMoL Tutor

This section discusses the design space surrounding the SMoL Tutor, including past

design, alternative designs that were considered but not implemented, and potential further

exploration.

4.6.1 SMoL Quizzes, the Precursor of SMoL Tutor

Before developing the SMoL Tutor, this interactive self-paced tutorial, I created a set of

quizzes (in the US sense: namely, a brief test of knowledge) that I call the SMoL Quizzes.

There were three quizzes, ordered by linguistic complexity. The first consisted of only basic

operators and first-order functions, corresponding to the def tutorials. The second added

variable and structure mutation, corresponding to the vectors and mutvars tutorials. The
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third added lambda and higher-order functions, corresponding to the lambda tutorials. The

entire instrument is presented in Appendix B.

Question orders were partially randomized. I wanted students to get some easy, warm-up

questions initially, so those were kept at the beginning. Similarly, I wanted programs that

are syntactically similar to stay close to each other in the quiz. This is so that, when students

got a second such program, they would not have to look far to find the first one and confirm

that they are indeed (slightly) different, rather than wonder if they were seeing the same

program again.

In contrast, the current SMoL Tutor fixes the order of warm-up tasks, for which I see

no clear downsides, and fully randomizes the order of other interpreting tasks. Many syn-

tactically similar programs were lost or changed across multiple iterations of development

(Section 5.4.2), so grouped randomization no longer carries much meaning, but it does hinder

the interpretation of data. See Section 4.6.5 for further discussion of task ordering.

Students only received feedback after having completed a whole quiz. At the end of

each quiz, they received both summative feedback and a document that explained every

program that appeared in the quiz. It is unclear to what extent students read, understood,

or internalized these. The SMoL Tutor gives immediate feedback, which I believe is much

better.

4.6.2 Not Providing Refutation Texts

The SMoL Tutor’s refutation texts come with costs: the Tutor’s maintainers must write

them manually, and students must read them, which could lead to fatigue as they progress

through later tasks.

To determine whether providing refutation texts is beneficial, we need to assess their

contribution to student learning. Ideally, this would involve a randomized controlled trial

comparing the SMoL Tutor with a version that omits refutation texts. However, even without

such an experiment, existing evidence suggests that refutation texts are effective. If they
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were not, students would either ignore them or, even if they read them, would not care about

their quality. As shown in Section 4.5, students read refutation texts and provide meaningful

feedback when a text does not make sense to them. Furthermore, when a refutation text is

unclear, students fail to make improvements.

It remains possible that refutation texts are either neutral or counterproductive but never

truly helpful. However, I find this unlikely, given extensive prior research indicating that

refutation texts support learning.

4.6.3 Enhancing Learning Retention

People forget knowledge over time, but repetition helps slow this process [22]. Delayed

repetition is more effective than immediate repetition [8], and active recall—where learners

apply knowledge—yields better retention than passive exposure [65].

The SMoL Tutor incorporates two strategies to support retention: (1) review tutorials

(Section 4.1.2) and (2) encouraging students to download completed tutorials for easier

review (Section 4.1.5).

(Future Work: Optimizing the Tutor to deliver review exercises at the ideal frequency

and spacing for maximum retention.)

4.6.4 Dependencies on Prior Knowledge

The SMoL Tutor assumes that students have a basic understanding of the language

constructs listed in Chapter 3 and can read programs that involve them. It also assumes

familiarity with at least one of the supported languages.

Although the Tutor may appear to require more extensive prior knowledge—especially

since it introduces technical terms like “environment” and “heap”—students are not ex-

pected to know these terms in advance. In fact, the Tutor aims to teach them, introducing

such vocabulary only when necessary to provide precise explanations and establish a shared

foundation for learning.
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Adapting the Tutor for students with less prior knowledge is challenging. In particular,

the refutation text approach on which the Tutor relies may not be well-suited for such

learners. These students often lack a conception rather than hold a misconception. However,

it is possible to adapt the Tutor in the opposite direction—toward teaching more advanced

programming language content.

4.6.5 Task Ordering

The SMoL Tutor currently presents most interpreting tasks in random order (except for

a few warm-up tasks) and randomizes all equivalence tasks.

It is likely that the effectiveness of the Tutor depends on the order of the tasks. However,

optimizing the order for effectiveness is a difficult problem:

• Instructors often prefer to order tasks by difficulty, placing easier ones first to create

a smoother learning curve. But difficulty depends on the misconceptions a student

holds, which vary from student to student. Even if we could find an ordering that

matches perceived difficulty, it may not maximize learning effectiveness. Easy tasks

can be boring and may give students the impression that the Tutor is not relevant to

them. This can reduce their engagement and, in turn, hurt their learning.

• Instructors might also want to group tasks by misconception, so students can focus

on one misconception at a time. However, many tasks target multiple misconceptions,

making such groupings infeasible for some tutorials. Even when such an ordering is

possible, it may not be ideal: spaced repetition is often more effective than back-to-back

repetition [8].

In general, theories about learning often conflict, and their effectiveness tends to be context-

dependent. What I am certain of, however, is that fixing the question order limits our ability

to interpret data (e.g., the analyses in Section 4.4 would be impossible), thereby limiting

our ability to improve the Tutor. Unless we are highly confident in a specific ordering,
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random order is likely the best default—it supports ongoing experimentation and continuous

improvement, and it is less likely to accidentally harm students simply because I hold strong

opinions about certain learning theories.

4.6.6 Handling Language Differences

The Tutor presents programs in multiple languages, which do not always agree on their

outputs (Section 8.2.1). When such disagreements arise, a design decision must be made

about which answer should be considered correct. Two natural options are:

1. Use the consensus answer. The SMoL Tutor adopts this approach and displays warnings—

such as “JavaScript behaves differently”—when applicable.

2. Use the answer given by the primary syntax (Section 4.1.1).

I chose the first approach because I prioritize teaching the standard model of computation

over the behavior of any particular language. This choice also proves practical in the context

of the SMoL Tutor: such disagreements occur in only 4 out of the 35 interpreting tasks in

the major tutorials (as listed in Figure 4.5).1 Moreover, in all four cases, there is a clear

consensus—only one language disagrees:

• JavaScript disagrees on whether to raise an error for division by zero (in two tasks).

• Python disagrees due to its identical syntax for variable assignment and definition,

where expressions like x = e are permitted even when x has not been explicitly declared.

• Scala disagrees on whether function parameters can be mutated.

4.6.7 Providing Misconception-Aware Feedback

In the case of the SMoL Tutor, both the programs and the set of wrong answers are

predefined, allowing feedback to be prepared in advance. I manually authored this feedback
1The non-major tutorials contain only warm-up tasks, where no disagreements occur, or post-test tasks,

where the rate of disagreement is similarly low.
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to tailor it to each specific program.

In more complex scenarios—such as those described by Chandra et al. [9]—programs and

wrong answers may be arbitrary, requiring feedback to be computed dynamically. In such

cases, misinterpreters are used to associate wrong answers with misconceptions, enabling the

system to generate misconception-aware feedback.
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CHAPTER 5

SMOL MISCONCEPTIONS

This chapter presents misconceptions about programming language behavior in SMoL.

I begin by listing the misconceptions I identified (Section 5.1), followed by a discussion of

misconceptions identified by others (Section 5.2). I then describe effective and ineffective ap-

proaches to identifying misconceptions (Section 5.3) and explain how I derived my collection

of misconceptions (Section 5.4).

5.1 Misconceptions That I Identified

Tables 5.1 to 5.3 present the misconceptions supported by my data. Each table follows

the same format: each row defines a misconception and provides a corresponding example

program, along with the correct output and the incorrect output reflecting the misconcep-

tion.

The misinterpreters (Chapter 7)—definitional interpreters that capture each misconception—

are provided in Appendix A.
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Table 5.1: Aliasing-related misconceptions
Misconception Example

DefByRef: Variable definitions alias vari-
ables.

(defvar x 12)
(defvar y x)
(set! x 0)
y
12
0

CallByRef: Function calls alias variables.

(defvar x 12)
(deffun (set-and-return y)

(set! y 0)
x)

(set-and-return x)
12
0

StructByRef: Data structures alias vari-
ables.

(defvar x 3)
(defvar v (mvec 1 2 x))
(set! x 4)
v
#(1 2 3)
#(1 2 4)

DefCopyStructs: Variable definitions
copy data structures.

(defvar x (mvec 12))
(defvar y x)
(vec-set! x 0 345)
y
#(345)
#(12)

CallCopyStructs: Function calls copy
data structures.

(defvar x (mvec 1 0))
(deffun (f y)

(vec-set! y 0 173))
(f x)
x
#(173 0)
#(1 0)

StructCopyStructs: Constructing data
structures copies input data structure(s).

(defvar x (mpair 2 3))
(set-right! x x)
(left (right (right x)))
2
error

43



Table 5.2: Scope-related misconceptions
Misconception Example

FlatEnv: There is only one environment,
the global environment. (This misconception
is a kind of dynamic scope.)

(deffun (addy x)
(defvar y 200)
(+ x y))

(+ (addy 2) y)
error
402

DeepClosure: Closures copy the values of
free variables.

(defvar x 1)
(defvar f

(lambda (y)
(+ x y)))

(set! x 2)
(f x)
4
3

DefOrSet: Both definitions and variable
assignments are interpreted as follows: if a
variable is not defined in the current environ-
ment, it is defined. Otherwise, it is mutated
to the new value.

(set! foobar 2)
foobar

error
2
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Table 5.3: Miscellaneous misconceptions
Misconception Example

FunNotVal: Functions are not considered
first-class values. They can’t be bound to
other variables, passed as arguments, or re-
ferred to by data structures.

(deffun (twice f x)
(f (f x)))

(deffun (double x)
(+ x x))

(twice double 1)

4
error

Lazy: Expressions are only evaluated when
their values are needed.1

(defvar y (+ x 2))
(defvar x 1)
x
y
error
1 3

NoCircularity: Data structures can’t
(possibly indirectly) refer to themselves.

(defvar x (mvec 1 0 2))
(vec-set! x 1 x)
(vec-len x)
3
error
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5.2 Misconceptions Identified by Others

Misconceptions related to scope, mutation, and higher-order functions have been widely

documented across diverse populations—from CS1 students to graduate students to users

of online forums—over many years (since at least 1986), in various programming languages

(from Java to Racket), and across different countries (such as the USA and Sweden).

Two particularly notable efforts stand out. The curated inventory by Chiodini et al.

[10] (latest version available at https://progmiscon.org/), discussed in Section 5.2.1, lists

90 misconceptions related to Python, Java, JavaScript, and Scratch. Sorva’s dissertation,

reviewed in Section 5.2.2, includes a table of 162 misconceptions, summarizing research up

to 2012.

Additional related work is discussed in Section 5.2.3.

5.2.1 The Curated Inventory by Chiodini et al. [10]

Chiodini et al. [10] catalog a wide range of misconceptions related to Python, Java,

JavaScript, and Scratch, based on several years of research. There is some overlap between

their collection and mine:

• AssignmentCopiesObject (i.e., “assignment copies the object” rather than “a refer-

ence to the object”) and VariablesHoldObjects (i.e., “a variable contains a whole

object” rather than “a reference to an object”) likely correspond to my DefCopyS-

tructs. I cannot distinguish clearly between the two based on their descriptions.

• VariablesHoldExpressions appears to align with my Lazy.

• ReferenceToVariable is likely equivalent to my DefByRef.

At the time of writing, they do not report misconceptions corresponding to the remaining

nine in my collection. Moreover, many of their misconceptions fall outside the scope of SMoL

for several reasons:
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Stylistic Differences Some entries seem to reflect stylistic preferences rather than actual

misconceptions. For example, ComparisonWithBoolLiteral describes the belief

that “to test whether an expression is True or False, one must compare it to True or

False”, rather than simply using the expression. It is unclear whether such students

would misinterpret the behavior of programs that omit the comparison. If not, this

belief does not qualify as a misconception in the sense used in this work.

Non-SMoL Features Several misconceptions involve features not supported by SMoL, such

as object-oriented programming.

Syntax-Specific Issues Some misconceptions appear closely tied to surface syntax. For in-

stance, AssignCompares—the incorrect belief that = compares values rather than

assigns them—typically arises in languages where assignment and equality use similar

syntax.

Artifact-Specific Other misconceptions may reflect issues with how they were elicited, rather

than misunderstandings of program behavior. For example, ReturnUnwindsMulti-

pleFrames refers to the belief that a Python return can unwind multiple call stack

frames. This was identified using UML-like sequence diagrams. I suspect that this

reflects confusion about the diagrams themselves rather than a misconception about

Python semantics.

That said, several of their misconceptions—particularly those related to conditionals—

appear relevant to my scope. I plan to include the following in future work: IfIsLoop,

ConditionalIsSequence, OutsideInFunctionNesting, and NoShortCircuit.

5.2.2 The Dissertation of Sorva [74]

Appendix A of Sorva [74] provides an extensive inventory of misconceptions reported in

the literature up to 2012. Like the list by Chiodini et al. [10], it includes syntax-dependent
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misconceptions (e.g., Nos. 11 and 12), misconceptions involving non-SMoL features (e.g.,

object-oriented programming), and those unlikely to occur among students who have com-

pleted CS1 and CS2 (e.g., No. 7: “The machine understands English”). Some misconceptions

relate more to implementation details than to observable language behavior (e.g., No. 22,

first identified by Kaczmarczyk et al. [38]: “Unassigned variables of primitive type (in Java)

have no memory allocated”).

Nonetheless, there are notable overlaps:

• No. 51 corresponds to my Lazy.

• No. 66 (first reported by Ma [44]) corresponds to my DefCopyStructs.

Several other misconceptions from Sorva’s list are particularly relevant, and I plan to

include them in future work:

• Nos. 24–37: Misconceptions related to conditionals and loops, reported by various

authors [19, 51, 60, 62, 72, 83].

• Nos. 47–49 (first reported by Fleury [27]): Misconceptions about scope.

• Nos. 52–53 (first reported by George [30]): Misconceptions about mutable variables.

• No. 67 (first reported by Ma [44]): Misconception about mutable data structures.

• No. 161: “Boolean values are just something used in conditionals and not data com-

parable to numbers or strings.”

5.2.3 Other Related Work on Misconceptions

Table 5.4 summarizes other studies that are especially relevant to my work. Addition-

ally, Tew and Guzdial [78] identify several cross-language difficulties, although they do not

explicitly classify them as misconceptions.
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Table 5.4: Similar misconceptions found in prior research.
Work Population Languages Misconceptions
Fisler, Krishnamurthi,
and Tunnell Wilson
[26]

Third- and
fourth-year
undergrads

Java and
Scheme

FlatEnv; CallByRef;
CallsCopyStruct;
DefByRef (See their
Section 4)

Saarinen et al. [66] CS2 students Java StructByRef (Their
G2); DefByRef or De-
fCopyStructs (Their
G3); CallsCopyStruct
(Their G4).

Strömbäck et al. [76] CS masters Python FlatEnv; CallByRef;
DefsCopyStruct (See
their section 4.2)

Strömbäck et al. [76] CS undergrads C++ FlatEnv; CallByRef;
DefsCopyStruct (See
their section 4.2)

5.3 How (Not) to Identify Misconceptions

5.3.1 Overcoming the Expert Blind Spot

As discussed in Section 5.2, several papers report student misconceptions related to

different fragments of SMoL. However, the comprehensiveness of these collections is unclear.

In many cases, the source of the example programs is not specified, and many appear to

have been generated by experts.

The issue with expert-generated misconceptions is that they are often incomplete. Edu-

cation researchers have documented the phenomenon of the expert blind spot [47]: experts

frequently fail to anticipate the kinds of difficulties that learners actually face. As a result,

we need methods for identifying misconceptions that go beyond expert intuition.

5.3.2 Ensuring Specific Evidence for Each Misconception

A key inspiration for my approach is the extensive literature on concept inventories [36],

including several developed for computer science [77]. A concept inventory is typically
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a multiple-choice instrument in which each question has one correct answer and several

carefully constructed distractors. These distractors are not random: each is designed and

validated to correspond to a specific misconception. If a student selects a particular wrong

answer, it provides strong evidence of a specific misunderstanding.

For example, consider the question “What is sqrt(4)?” If a student answers 16, it

suggests confusion between square roots and squaring—a meaningful diagnostic. In contrast,

an answer like 37 is less informative.

Concept inventories are powerful tools in instructional settings. Instructors can use them

with clickers to gather real-time insights into student thinking. If multiple students choose

a particular distractor, the instructor not only knows they are incorrect but also has a clear

hypothesis about the underlying misconception—and can respond accordingly.

5.3.3 Precisely Defining Misconceptions

Misconceptions should be described as precisely as possible. A common practice in prior

work, including that in Section 5.2, is to document misconceptions as short statements,

occasionally accompanied by one or two illustrative programs. This makes it difficult to

determine whether two misconceptions are actually the same or merely similar.

By contrast, when a misinterpreter is provided for a misconception—as described in

Chapter 7—it becomes possible to generate many more example program-output pairs. Re-

searchers who are comfortable reading interpreter code can even make exact comparisons.

This precision supports reproducibility, clarity, and consistency across studies.

5.4 How I Identified the Misconceptions

The considerations discussed in Section 5.3 add up to a somewhat challenging demand.

We want to produce a list of questions (each one an MCQ) such that

1. We can get past the expert blind spot,
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2. We can generally associate wrong answers with specific misconceptions, approaching a

concept inventory, and

3. We have a sense of what misconceptions students have.

Of course, I would also want to write a misinterpreter for each misconceptions that I

identified.

5.4.1 Generating Problems Using Quizius

My main solution to the expert blind spot is to use the Quizius system [66]. In contrast

to the very heavyweight process (involving a lot of expert time) that is generally used to

create a concept inventory, Quizius uses a lightweight, interactive approach to obtain fairly

comparable data, which an expert can then shape into a quality instrument.

In Quizius, experts create a prompt; in my case, I asked students to create small but

“interesting” programs using the SMoL Language. Quizius shows this prompt to students

and gathers their answers. Each student is then shown a set of programs created by other

students and asked to predict (without running it) the value produced by the program.2

Students are also asked to provide a rationale for why they think it will produce that output.

Quizius runs interactively during an assignment period. At each point, it needs to deter-

mine which previously authored program to show a student. It can either “exploit” a given

program that already has responses or “explore” a new one. Quizius thus treats this as a

multi-armed bandit problem [39] and uses that to choose a program.

The output from Quizius is (a) a collection of programs; (b) for each program, a collection

of predicted answers; and (c) for each answer, a rationale. Clustering the answers is easy

(after ignoring some small syntactic differences). Thus, for each cluster, I obtain a set of

rationales.
2In the course (Chapter 9), students were given credit for using Quizius but not penalized for wrong

answers, reducing their incentive to “cheat” by running programs. They were also told that doing so would
diminish the value of their answers. Some students seemed to do so anyway, but most honored the directive.
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After running Quizius in the course (Chapter 9), I took over as an expert. Determining

which is the right answer is easy. Where expert knowledge is necessary is in clustering the

rationales. If all the rationales for a wrong answer are fairly similar, this is strong evidence

that there is a common misconception that generates it. If, however, there are multiple

rationale clusters, that means the program is not discriminative enough to distinguish the

misconceptions, and it needs to be further refined to tell them apart. Interestingly, even

the correct answer needs to be analyzed, because sometimes correct answers do have in-

correct rationales (again, suggesting the program needs refinement to discriminate correct

conceptions from misconceptions).

Prior work using Quizius [66] finds that students do author programs that the experts

did not imagine. In my case, I seeded Quizius with programs from prior papers (Section 5.2),

which gives the first few students programs to respond to. However, I found that Quizius

significantly expanded the scope of my problems and misconceptions. In my final instrument,

most programs were directly or indirectly inspired by the output of Quizius.

5.4.2 Distilling Programs and Misconceptions

While Quizius is very useful in principle, it also produced data that required significant

curation for the following reasons:

Misleading Variable Names For example:

(defvar x 1)

(defvar y 2)

(defvar z 3)

(deffun (sum a ...) (+ a ...))

(sum x y z)

A reader might think that sum takes variable arguments (producing 6), but in fact, in

many Lispy languages (and in the SMoL Language), ... is a single variable, leading to
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an arity error. Such programs do not reveal useful behavior misconceptions and were

therefore filtered out.

Undefined Behavior Some programs relied on (or stumbled into) intentionally under-specified

aspects of the SMoL Language, such as floating-point versus rational arithmetic. While

important in general programming, I considered these outside the scope of SMoL Char-

acteristics (due to their lack of standardization) and removed such programs.

Problems Specific to Lispy Syntax Some programs are likely would not produce diverse out-

puts if they were written in a non-Lispy syntax. For instance, the following program

relies on interpreting the inequality correctly. It checks whether 3 > n (i.e., whether

n < 3), but some students presumably vocalized it incorrectly as “greater than 3, n?”:

(filter (lambda (n) (> 3 n)) '(1 2 3 4 5))

These programs were removed.

Hard to Execute Mentally Some programs produced diverse outputs simply because they

were hard to parse or mentally trace. One example was a 17-line program with six

similar-looking and similarly named functions. Such programs were removed or sim-

plified.

Missing Certain Feature Combinations The existing programs did not cover all the con-

cepts I wanted students to engage with. For example, some Quizius-generated pro-

grams demonstrated vector aliasing through variable definitions, but none illustrated

aliasing via function calls. In such cases, I authored new programs to fill these concep-

tual gaps.

Conflating Misconceptions Some programs produced wrong (or even correct) answers that

could be explained by multiple (mis)conceptions. In these cases, the program needed

to be refined to be more discriminative, and misinterpreters (introduce in Chapter 7)

were particularly helpful in this process (Section 7.2).
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As a result, I manually curated the programs and misconceptions to address these issues.

This curation must be an iterative process, typically due to the last reason—whenever I

find new misconceptions, the question set may need to be refined—but also because some

programs may not appear clearly problematic until sufficient data have been collected.

5.4.3 Confirming the Misconceptions With Cleaned-Up Programs

Having curated the output, we had to confirm that these programs were still effective!

That is, they needed to actually find student errors.

I delivered multiple-choice questions (MCQs) through various systems described in Chap-

ter 4. Each MCQ presents a program and asks students to predict the program output.

Students might choose from an available choice, or pick a special choice, “Other”, which

then allows students to enter an arbitrary answer.

This style of MCQs is related to concept inventories, which is discussed as a related work

in Section 5.3. In a concept inventory, each option must either be the correct answer or

correspond to exactly one misconception. In my case, the one-to-one mapping is mostly, but

not entirely, preserved:

• An “Other” choice is presented.

• Additional random choices are presented to make it harder for students to find the

right choice by elimination. Those options do not correspond to any misconceptions.

The reason for adding random options is as follows. The data often suggest very few

wrong choices. Thus, in most cases, students have a considerable chance of just guessing

the right answer or successfully using a process of elimination. By increasing the number

of options, I hoped to greatly reduce the odds of getting the right answer by chance or by

elimination.

It was important to add wrong answers that are not utterly implausible because those

would become easy to eliminate. Therefore, I added extra options as follows:
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1. The “error” option is added if it is not already an option.

2. Collect templates of existing options. A template of an option is the option with all

the number literals removed. For instance, The template of “2 3 45” is “_ _ _”.

3. Keep adding random options until we run out of random options or have at least eight

distinct options. Each random option is generated by filling a template with number

constants from the source program or existing options.

I hope this reduced both guessing and elimination and forced students to actually think

through the program. Of course, these new answers do not have a clear associated miscon-

ception.
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CHAPTER 6

STACKER

Section 6.1 provides a guided tour of the Stacker, illustrating its typical usage and in-

troducing its major components. Section 6.2 delves into the system’s details. Section 6.3

explores the teaching instruments enabled by the Stacker. Section 6.4 compares the sys-

tem with similar tools. Sections 6.5 and 6.6 present two user studies about the Stacker.

Section 6.7 discusses design the design space, summarizing lessons learned from the tool

comparison (Section 6.4) and the user studies (Sections 6.5 and 6.6).

6.1 A Guided Tour of Stacker

The Stacker is a tool for tracing SMoL programs. Figure 6.1 shows the UI when the

Stacker is first opened. The UI consists of two main components, separated by a vertical

gray bar:

(Program) Editor Panel For entering SMoL programs. This panel includes three bars at the

top and a program editor, which supports common text-editing features like syntax

highlighting. Section 6.2 provides more details.
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Figure 6.1: The Stacker user interface

Figure 6.2: The Stacker user interface filled with an example program

Trace Panel For starting, stopping, and navigating traces. This panel includes an advanced

configuration bar, a trace control bar, and a display area. Advanced configurations are

covered in Section 6.2.

The trace control bar enables buttons only when applicable. Initially, only the “Run”

button is available, while the display area shows a hint (e.g., “To start tracing, …”). Once

tracing starts, the display updates accordingly.

6.1.1 Example Program

Figure 6.2 shows the Stacker loaded with the following SMoL program:
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Figure 6.3: An example Stacker trace (showing state 1 out of 5)

(defvar x 1)

(deffun (addx pr)

(defvar x 2)

(+ x (vec-ref pr 0) (vec-ref pr 1)))

(+ (addx (mvec 49 51)) x)

This program defines a variable x and a function addx, then prints the sum of (addx (mvec 49 51))

and x. The function call (addx (mvec 49 51)) defines a local variable x, then returns the

sum of the local x and the first two elements of the function argument pr.

To maintain a reasonable length, this tour’s example program does not cover all aspects of

SMoL. However, it highlights some of the most important ones, including variable bindings,

function calls, and compound data.

6.1.2 Running the Program

Clicking one of the “run” buttons in Figure 6.2 transitions the Stacker to tracing mode

Figure 6.3, triggering the following changes:

• Editor Panel: Editing is disabled, and a reminder appears, instructing users to stop

tracing before making changes. The Stacker disables editing while tracing to avoid

showing information inconsistent on the editor panel and the trace panel.
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• Trace Control

– The “Run” button is disabled (since the program is already running).

– The “Stop” button is enabled.

– The “Previous” button remains disabled (no prior states exist).

– The “Next” button is enabled (to advance the trace).

– “Share” buttons are enabled (for sharing the current state).

• Display Area Now shows the current trace state, structured as follows:

– Three columns (top): the stack column (“Stack & Current Task”), the environ-

ment column (“Environments”), and the heap column (“Heap-allocated Values”)

– Program output (initially displaying “(No output yet)”).

The stack column, as its label suggests, includes two parts from top to bottom, split by

a black horizontal line: the (call) stack and the current task.

The (call) stack remains empty in the current state (Figure 6.3), as indicated by the label

“(No stack frames)”. Stack frames are inserted when a function call happens and removed

when a function call returns.

The current task is represented by a box below the stack, which always includes three

lines from top to bottom: a brief description of the current task, the context, and the

environment of the current task. The box color depends on the kind of tasks. In the current

state (Figure 6.3):

• The current task is to compute the function call (@312 @711), where @312 is the

function and @711 is the only argument.

• The current task occurs in (+ • x), meaning that after the function call returns, the

Stacker will compute (+ • x) with “•” replaced by the returned value.
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• The current task occurs in the top-level environment, meaning the x in (+ • x) refers

to the x defined in the top-level environment.

The context is a local evaluation context. A context is a piece of program with exactly

one hole (in my case, represented by “•”), and an evaluation context is, roughly speaking, a

context where the hole indicates the next smallest unit of meaningful computation [24]. In

my case, the evaluation contexts are local because they describe only what happens within

a function, without referring to the caller’s context.1

Next, the environment column lists environments constructed so far in the trace. Envi-

ronments are represented by dark green boxes, each containing three pieces of information

from top to bottom: the address, the variable bindings, and the parent environment from

which the environment extends. In the current state (Figure 6.3), the top-level is the only

one constructed so far. This environment binds two top-level variables (x is bound to 1, and

addx is bound to the function @312) and extends from the primordial environment, where

built-in constructs are defined.

The heap column lists heap-allocated values constructed so far in the trace. These values

are represented by boxes of varying colors, depending on the kind of the value. Functions

are shown in light green boxes, whereas vectors are gray.
1We can obtain the standard form of a global evaluation context by composing local evaluation contexts

into the holes of the preceding contexts on the stack. While doing so, we must also substitute variables using
the corresponding environments before composition.
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Figure 6.4: An example Stacker trace (showing state 2 out of 5)

A function box displays the function’s source code location and the environment in which

it was constructed. The environment is needed when the function’s body refers to variables

defined outside of it (i.e., free variables). Users can click the source code location to view

the function body, for example:

Clicking the “Next” button in Figure 6.3 updates the Stacker to Figure 6.4. In Figure 6.3,

the Stacker was about to compute a function call, so Figure 6.4 reflects the results of that

call: a new environment is constructed to bind the function argument, the stack now contains

a stack frame for the function call, and the current task has changed.

The new environment binds the function argument and declares the local variable x. The

bomb symbol indicates an uninitialized binding. In a real language implementations, local

variables might or might not reside in the same environment as function arguments. The

Stacker presents a simplified view to avoid UI cluster.

61



Figure 6.5: An example Stacker trace (showing state 3 out of 5)

Figure 6.6: An example Stacker trace (showing state 4 out of 5)

Stack frames are presented as yellow boxes, the same color as function call tasks (Com-

pare Figure 6.3 and Figure 6.4). This emphasizes the connection between function calls and

stack frames. The content is nearly identical, except that a function call task says “Calling

…”, whereas a stack frame says “Waiting for a value”.

The current task is colored yellow only when displaying a function call, black when

terminated, and blue otherwise. The kinds of current task are as follows:

1. The stacker is calling a function.

2. The stacker just called a function.

3. The stacker is returning from a function.
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Figure 6.7: An example Stacker trace (showing state 5 out of 5)

4. The stacker is mutating a (variable) binding.

5. The stacker is mutating a data structure.

6. The stacker is printing a value.

7. The stacker just terminated.

The current task kinds determine all possible states. Designing a good collection of state

kinds is non-trivial. I discuss this issue in Section 6.7.6.

The previous state (Figure 6.3) illustrates the first kind of current task, the current state

(Figure 6.4) illustrates the second. The remaining trace states each demonstrate a different

task kind:

• Figure 6.5 The stacker is returning from the function call.

• Figure 6.6 The stacker is printing the returned value.

• Figure 6.7 The stacker has terminated.

6.1.3 Key Features of Stacker

I conclude this section by highlighting several key features of the Stacker:
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• The Stacker can display programs and traces in any language supported by the SMoL

Translator (Chapter 8), but programs must be authored in the SMoL Language. (See

Section 6.7.11 for a discussion of this design.)

• Every (non-final) state presents sufficient information to predict the next state.

• Users can generate a shareable URL for the current state, allowing others to view the

exact same trace. (See Section 6.7.10 for a discussion of this design.)

• Stacker generates traces on the fly, so programs need not be terminating. (See Sec-

tion 6.7.15 for a discussion of this design.)

• Memory addresses for environments and heap-allocated values are randomly generated,

with a controllable random seed. (See Section 6.7.9 for a discussion of this design.)

6.2 More Details on Using Stacker

This section presents more details on using the Stacker, complementing the guided tour

(Section 6.1).

6.2.1 Editing Support

The UI element in the top-left corner offer guidance on writing SMoL programs. By

default, it looks like
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The underlined text “Lispy” links to a reference document summarizing the SMoL Language

(essentially a shorter version of Chapter 3). Expending this element reveals a list of example

programs:

Here is a brief description of the listed programs:

Fibonacci defines and calls a function to compute the N-th Fibonacci number

Scope scopes variables in a perhaps confusing way.

Count defines and tests a “counter” function that increases with each call.

Aliasing aliases data structures in a perhaps confusing way.

Object simulates an object using the SMoL Language.

6.2.2 Presentation Syntax

The following UI element allows users to choose the syntax for displaying programs and

traces. Users are indeed choosing the syntax rather than the language: The Stacker always

follow the semantics of the SMoL Language regardless of the chosen syntax. The “Lispy“

syntax stands for the syntax of the SMoL Language. All syntaxes from Section 8.1 are

supported, except for Scala, which is still in progress. Choosing a syntax other than “Lispy”

triggers a live translation in the trace panel (Figure 6.8).
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Figure 6.8: The live translation feature of the Stacker. When users are editing their programs
and the presentation syntax is set to non-Lispy, a live translation of the program is shown
on the trace panel.

6.2.3 Changing the Relative Font Size of the Editor

The above dropdown menu controls the font size of the editor, rather than the entire UI.

This choice is intentional: since the Stacker is web-based, users can zoom in or out via their

browser, but may occasionally need finer control over the editor’s text size. For example:

• Instructors may reduce the font size to fit a long program’s trace on a single screen.

• Users may increase the font size for readability when there is excessive whitespace.

6.2.4 Editor Features

The editor provides standard editing features, including:
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• Autocompletion for SMoL Language keywords and parentheses

• Line numbers

• Multi-cursor editing

• Syntax highlighting

When a non-Lispy syntax is selected and the program is running, the editor displays the

translated program with syntax highlighting.

The editor is based on CodeMirror [13], which makes the feature straightforward to

implement.

6.2.5 Share Buttons

The following buttons generate permalinks that share the current trace state/configura-

tion. The right button opens the Stacker in a simplified mode, hiding irrelevant details for

easier trace navigation (Figure 6.9).

6.2.6 Advanced Configuration

The following UI element provides additional tracing configurations.

After expansion, it becomes
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Figure 6.9: A read-only view of a Stacker trace

The “Random seed” is a string determining address generation. If unspecified, the Stacker

selects a random seed (e.g., “lambda” in the example) and displays it in gray.

The “Hole” is a string representing holes in context, defaulting to “•” as seen in prior

examples.

“Print the values of top-level expressions” controls whether top-level expressions are

printed to output.

6.2.7 The Trace Display Area Highlights Replaced Values

The Stacker highlights changes caused by mutations:

• When a variable assignment occurs, the updated environment field is highlighted in

yellow in the next state.

• When a structure mutation happens, the replaced field is also highlighted in yellow.
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Table 6.1: All combinations of foreground and background colors in the Stacker
Foreground Background Example Usage

white #000000 Example Terminated
white #0000c8 Example The default task color
white #646464 Example Data structure
black #41bc76 Example Environments
black #c1e197 Example Functions
black #ffbb00 Example Stack frames and function calls
black #ff7f79 Example Errors

6.2.8 The Trace Display Area Circles Referred Boxes

Hovering over an address reference thickens the referred box’s border and changes the

border color to red.

6.2.9 The Trace Display Area Color-Codes Boxes

The Stacker color-codes boxes according to Table 6.1

6.3 Educational Use Cases

The Stacker is designed for educational use. Instructors can step through traces to explain

program execution or encourage students to explore the system independently. This section

presents several perhaps more interesting use cases. While I believe these are effective, they

are not empirically validated, so readers should consider them as instructional ideas rather

than evidence-based recommendations.

6.3.1 Predicting the Next State

Students tend to learn more when they actively predict the next state before clicking

“Next” rather than passively stepping through traces. While my observations are anecdotal,

this aligns with active learning principles, which have been widely studied (see [58] for a

review).
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6.3.2 Contrasting Two Traces

Many SMoL misconceptions can be viewed as incorrectly assuming that different pro-

grams behave the same. For example, the DefCopyStructs misconception leads students

to believe that the following two programs produce identical results:

; ; Program 1

(defvar x (mvec 12))

(defvar y x)

(vec-set! x 0 345)

y

; ; Program 2

(defvar x (mvec 12))

(defvar y (mvec 12))

(vec-set! x 0 345)

y

To address such misconceptions, we can instruct students to compare the two program

traces and identify a pair of trace states that explain their differing behavior.

6.3.3 From State to Value

In the PL course (Chapter 9), students were asked to determine a program’s output based

on a given trace state (illustrated in Figure 6.10). These exercises essentially asked students

to predict the final value from an intermediate state. I found them useful for assessing

students’ understanding of environments. Further analysis of the collected data remains

future work.

6.3.4 From State to Program

In the PL course (Chapter 9), students were also instructed to construct programs that

would produce a given trace state. Figure 6.11 illustrates one such state. Students were told

that every solution must include a pause function that simply returns 0:

(deffun (pause) 0)
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Figure 6.10: A state-to-output question
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Figure 6.11: A state-to-program question

For the example shown, a correct answer is:

(deffun (pause) 0)
(defvar v1 (mvec 0))
(defvar v2 (mvec v1))
(defvar v0 (mvec v1 v2))
(vec-set! v1 0 v2)
(pause)

These exercises essentially asked students to reconstruct an initial program based on an

arbitrary intermediate state. They turned out to be quite challenging, likely because students

needed to consider all available language constructs. I observed that students learned a great

deal through this process. Further analysis of the collected data remains future work.

6.3.5 Using Stacker to Teach Generators

The Stacker concepts can also help explain language features beyond SMoL, such as

generators.

A generator behaves similarly to a stack frame—it has a context and an environment.

However, while stack frames disappear once their context is empty, generators persist beyond

72



Figure 6.12: A Python program for the Stacker-generator instrument

def pause():
return 0

def make_gen(n):
def gen():

yield n + 1
yield n + 2
yield n + 3

return gen
g1 = make_gen(0)()
g2 = make_gen(10)()
pause()
print(next(g1))
print(next(g1))
print(next(g2))
pause()

execution. They can leave the stack either when their context becomes empty or when they

yield, and they remain in memory until garbage collection determines they are no longer

needed.

In the PL course (Chapter 9), students drew Stacker-like diagrams to visualize Python

generator behavior. One such program is shown in Figure 6.12.

6.4 Comparing Stacker with Other Tools

This section compares the Stacker with several program trace visualization tools by run-

ning essentially the same program (Table 6.2) in each tool. All tools are configured to show

the program state when the function addx has just been called, and the system is about to

evaluate the first expression in the function body. The state as presented by the Stacker is

shown in Figure 6.13.

This particular program state is chosen to simultaneously satisfy the following criteria:

• Avoid using language features that are unsupported by some of the surveyed tools,
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Table 6.2: A program for tool comparison
Language Program

SMoL

(defvar x 1)
(deffun (addx pr)

(defvar x 2)
(+ x (vec-ref pr 0) (vec-ref pr 1)))

(+ (addx (mvec 49 51)) x)

Python

x = 1
def addx(pr):

x = 2
return x + pr[0] + pr[1]

addx([ 49, 51 ]) + x

JavaScript

let x = 1 ;
function addx(pr) {

let x = 2 ;
return x + pr[0] + pr[1] ;

}
addx([ 49, 51 ]) + x

Java

public class Main {
static int x = 1 ;
public static int addx(int[] pr) {

int x = 2 ;
return x + pr[0] + pr[1] ;

}
public static void main(String[] args) {

int _ = addx(new int[]{49, 51}) + x ;
return ;

}
}

Racket

(define x 1)
(define (addx pr)

(local [(define x 2)]
(+ x (first pr) (second pr))))

(+ (addx (list 49 51)) x)

74



Figure 6.13: A Screenshot of the Stacker (a duplicate of Figure 6.4)

such as first-class functions and mutable state;

• Cover as many SMoL language features as possible;

• Ensure that each kind of visual element (stack frame, environments, functions, and

data structures) is presented at least once.

6.4.1 The Surveyed Tools

The comparison includes the following tools:
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Figure 6.14: A Screenshot of the Environment Model Visualization Tool

The Environment Model Visualization Tool (hereafter “the Env tool“) Originally devel-

oped by Cai et al. [7] and later extended by Abad and Henz [1], this tool implements the

environment model as presented in Structure and Interpretation of Computer Programs [2].

A screenshot of the Env tool is shown in Figure 6.14.
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Figure 6.15: A Screenshot of the Online Python Tutor Running Python

Figure 6.16: A Screenshot of the Online Python Tutor Running JavaScript

Figure 6.17: A Screenshot of the Online Python Tutor Running Java
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Online Python Tutor (hereafter “OPT”) Developed by Guo [33], this tool supports multiple

language. Figures 6.15 to 6.17 show screenshots for different language configurations.

Figure 6.18: A Screenshot of the Jsvee & Kelmu

Jsvee & Kelmu (and their predecessor UUhistle) (hereafter “JK”) According to UUhis-

tle’s official website (http://www.uuhistle.org), Jsvee & Kelmu [71] are successors to

UUhistle [75]. Figure 6.18 shows a screenshot of JK.2

2Both systems offer more functionality than typical program trace visualization tools: UUhistle pioneered
visual program simulation—a system that supports users in constructing program states as a way to practice
their understanding—while Jsvee & Kelmu provide many features for tailoring program animations, such as
adding highlights and explanations. In this work, I focus on their use as program trace visualization tools
and do not consider their additional capabilities.
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Figure 6.19: A Screenshot of Jeliot

Jeliot A series of visualization tools summarized by Ben-Ari et al. [5]. Figure 6.19 shows a

screenshot of the latest version (Jeliot 3).
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Figure 6.20: A Screenshot of Stepper

The Algebraic Stepper in DrRacket (previously known as DrScheme) (hereafter “Step-

per”) Developed by Clements, Flatt, and Felleisen [11]. Figure 6.20 shows a screenshot of

Stepper.

There are many other similar tools. Given limited resources, I selected a subset of

representative tools. Table 6.3 explains why they are selected. For a more comprehensive

survey, see Sorva’s dissertation [74].

6.4.2 Differences in Presented Information

Tables 6.4 to 6.7 compare these tools based on their presentation of the following aspects

of program state:

The Current Task What the system is currently doing (e.g., “calling a function”, “summing

two numbers”, “returning from a function”). (Table 6.4; See Section 6.7.1 for further

discussion)
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The Continuation What the system will do after the current task is complete. (Table 6.5;

See Section 6.7.2 for further discussion)

Environments How the tool represents the bindings and scopes of variables. (Table 6.6)

The Heap How the tool shows heap-allocated values, including functions and data struc-

tures. (Table 6.7)

Sections 6.7.1 to 6.7.4 further discuss the differences, including proposing alternative designs

and comparing the pros and cons of the design options.

6.4.3 Other Differences Among the Tools

This section discusses additional differences among the tools that are not covered in

previous sections.

Neighboring States Among the surveyed tools, only the Stepper presents a step—that is,

a state along with its immediate successor. Most tools present one state at a time.

Some tools do not present neighboring states in their entirety but still provide some

information about previous states. OPT (Figures 6.15 to 6.17) marks the source code line

of the previous current task with a light green arrow. JK (Figure 6.18) provides textual

explanations about the previous state (e.g., “Fetching value 2” in the figure).

Addresses vs. Arrows Environments and values form references. Only the Stacker (Fig-

ure 6.13) and JK (Figure 6.18) present references as textual labels. The Env tool (Fig-

ure 6.14), OPT (Figures 6.15 to 6.17), and Jeliot (Figure 6.19) present references as arrows.

JK also displays all related arrows when users hover their mouse over a reference. (This

discussion does not apply to the Stepper.)
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Granularity of Steps The Stacker typically produces shorter traces than other tools. Other

tools often generate longer traces because they break down operations like variable defini-

tions, vector construction, and delta reductions into finer-grained steps.

Stepper provides case-by-case control, allowing users to pick the step size using dedicated

buttons.

Color Coding All tools except the Env tool (Figure 6.14) use background color coding to

visually distinguish different types of elements.

Web Access and Permalinks All surveyed tools are web-based except for Jeliot and the

Stepper.

Among the web-based tools, only the Stacker and OPT provide a button to generate

permalinks for sharing the current state.

Multi-lingual Support and Translation The Stacker, the Env tool (Figure 6.14), and OPT

appear to support multiple natural languages.

Among them, only the Stacker offers a translation feature, though it currently supports

only unidirectional translation from the SMoL Language.

Looping Constructs Only the Stacker and the Stepper do not support looping constructs.

Smooth Transitions Only Jeliot and JK present transitions between states using smooth

animations.

6.5 User Study 1: Stacker vs. Algebraic Stepper in DrRacket

During the early development of the Stacker, I conducted a study comparing it with

the Algebraic Stepper in DrRacket. This study took place in the Accelerated Intro course

(see Chapter 9 for details) in mid-2022. Students in this course may have had some prior
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Figure 6.21: The programs used in the Stacker-vs-Stepper study (Section 6.5)

; ; Program 1

(define (singles alon)
(cond

[(empty? alon) empty]
[(cons? alon)
(cons
(first alon)
(singles
(remove-leading-run (first alon) (rest alon))))]))

(define (remove-leading-run val alon)
(cond

[(empty? alon) empty]
[(cons? alon)
(cond

[(equal? val (first alon))
(remove-leading-run val (rest alon))]

[else alon])]))
(singles (list 1 1 2 1 1 1))

; ; Program 2

(define (double-up ns)
(cond

[(empty? ns)
empty]

[(cons? ns)
(cons (first ns)

(cons (first ns)
(double-up (rest ns))))]))

(double-up (list 2 1 3))
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Figure 6.22: The special-version Stacker used the Stacker vs Stepper study (Section 6.5)
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Figure 6.23: The Stepper tracing a program used the Stacker vs Stepper study (Section 6.5)
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exposure to debuggers and limited familiarity with the Stepper, either through reading How

to Design Programs (HtDP) or using DrRacket. However, they had not received formal

instruction on using the Stepper. They had certainly never seen the Stacker and likely had

never encountered evaluation contexts.

6.5.1 Key Tool Differences

This study uses a special version of the Stacker (shown in Figure 6.22). This version

differs significantly from the current one. Notably:

• It presents only the first column, which includes the stack and the current task.

• Environments and heap contents are integrated into the call stack.

• Holes in evaluation contexts are rendered as “□” rather than “•”.

• Racket is the only supported language.

Figure 6.23 illustrates the Stepper showing the “same” state as in the Stacker figure

(Figure 6.22).

This study essentially compares two different approaches for presenting the current task,

continuation, and environment:

Stacker presents the continuation as a sequence of stack frames, each representing a local

evaluation context paired with an environment for resolving variable bindings. The

current task is shown in a box below the stack.

Stepper presents the continuation as the entire program, using substitution to resolve vari-

able bindings. The current task is highlighted in green.

One other notable difference is that the Stepper shows roughly twice as many intermediate

states.
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6.5.2 Study Objectives

The students likely had never encountered evaluation contexts before. This study exam-

ines how well they could comprehend the Stacker’s novel presentation.

The Stepper (and indeed any substitution-based tool) is likely less effective when working

with data structures. Data structure presentations are often significantly longer than variable

names. Therefore, when substitution replaces variables bound to data structures, the visual

state may change considerably, especially if the substituted structure is much larger than

the original name.

6.5.3 Study Content

The study used two programs (Figure 6.21), each traced by both tools. The programs

were carefully selected to manipulate “long” data structures: Program 1 defines recursive

functions that consume long lists; Program 2 defines recursive functions that produce long

lists.

The four traces were presented as videos. Students were asked to watch the videos and

then complete tasks designed to assess their understanding of the tools and to gather their

preferences between them.

6.5.4 Results

Students demonstrated a reasonable understanding of evaluation contexts. They were

able to make connections between the evaluation contexts in the Stacker and the annotated

programs in the Stepper:

• They recognized that the “□” in the bottom-most box of the Stacker corresponds to

the green highlight in the Stepper.

• They also noticed that the evaluation contexts (i.e., the fields labeled “in”) matched
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the parts of the program excluding the highlighted expression.

Students also successfully related the environments in the Stacker (i.e., fields labeled

“where”) to the substitutions made by the Stepper. This is not surprising, as many students

may have had experience using debugging tools.

The following student comments are particularly insightful:

• Some students observed that when debugging, one could use the Stacker to identify

the problematic function call and then “zoom in” with the Stepper. (See Section 6.7.6

for further discussion.)

• Many students considered the Stacker more helpful for understanding recursion. Sev-

eral noted that the environments in the Stacker made it easier to track the parameters

of recursive calls.

• Several students said the Stacker helped them better understand “how much DrRacket

has to do to compute the function”. This perception may stem from UI differences:

the Stacker breaks the continuation into distinct frames, making function calls more

visually prominent. Each new frame visibly appears during execution, suggesting a

cost model in which each function call allocates a new frame. In contrast, the Stepper

presents the continuation as a single large evaluation context, with smaller and subtler

UI updates during function calls.

Students also provided tool-specific feedback:

On the Stacker

• Some disliked that information such as “Calling (double-up '())” disappears once

the current task becomes a stack frame. (See Section 6.7.2 for further discussion.)

• Several found the labels “in” and “where”, along with the x 7→ . . . notation, confusing.

In response to this, the Stacker was updated to use more descriptive field names. For

instance, “in” was renamed to “in context” and “where” to “in environment”.
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On the Stepper

• Students were confused by the distinction between “Next” and “Next Call”.

• They felt there were too many intermediate steps, making it easy to get lost.

• As expected, some commented that function calls were replaced by large expressions,

obscuring their structure.

• Others noted that the interface displayed too much text.

Overall, students expressed mixed preferences between the tools, though more students

preferred the Stepper. Evaluation contexts themselves did not appear to be a problem,

but the concise labels did. The substitution-related issue described in Section 6.5.2 was

confirmed, though not as severe as anticipated.

It is worth noting that the results should be interpreted with caution for the following

reasons:

• I am not entirely sure how deeply students understood the UI. There was no “deep”

comprehension test, such as asking students to fill in a state template based on a

program. Students may have inferred meaning from function names (e.g., double-up)

and the source code itself.

• This student population was particularly selective and may have had prior experience

with other tracing tools, such as gdb. As a result, they may have found labels like

“stack” more meaningful than novice students would.

Nevertheless, I took this study as formative feedback for the UI design of the Stacker.

6.6 User Study 2: Stacker vs. Online Python Tutor

I conducted a study comparing the Stacker and the Online Python Tutor (OPT) to better

understand the design space of tracing tools. The study was carried out in the PL course
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population (Chapter 9) in late 2022.

Since then, the Stacker has evolved from a desktop application to a web-based tool,

added support for non-Lispy syntaxes, and undergone minor UI tweaks. Nevertheless, I

believe lessons I learned from the study still apply.

6.6.1 Survey Content

The study asks students to run essentially one program in the two tools. The program

for the Stacker is written in the SMoL Language (Chapter 3):

(defvar make-counter

(lambda (n)

(defvar f

(lambda ()

(set! n (+ n 1))

n))

f))

(defvar c1 (make-counter 0))

(defvar c2 (make-counter 0))

(c1)

(c1)

The OPT version of the program is written in Python 3:

def make_counter(n):

def f():

nonlocal n

n += 1

return n
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return f

c1 = make_counter(0)

c2 = make_counter(0)

print(c1())

print(c1())

Both programs output 1 followed by 2.

Students were instructed to run both tools in sequence, with the order randomly chosen

by the survey system. The following list shows the prompts presented when the survey

chose to ask about the Stacker before OPT. In the other version, the phrases “Stacker” and

“Python Tutor” are simply swapped.

1. Below you are given a program to run in Stacker. As you run this program in Stacker,

please record what you notice about the tool:

2. Once you are done running, please record what you wonder about the tool:

3. Below you are given an equivalent program to run in Python Tutor. As you run this pro-

gram in Python Tutor, please record what you notice about the tool:

4. Once you are done running, please record what you wonder about the tool:

5. Now we would like you to compare and evaluate these two tools. In what follows, please

ignore the programming languages; imagine both tools support the same language(s).

6. In what ways did you like Stacker more than Python Tutor and vice versa? Please

make clear which tool you are referring to.

7. In an absolute sense (not relative to the other tool), what did you like and dislike about

Stacker?
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8. In an absolute sense (not relative to the other tool), what did you like and dislike about

Python Tutor?

9. In what kinds of situations (if any) would you recommend a classmate use one tool

rather than the other?

10. Do you have any other comments about these tools?

6.6.2 Results and Discussion

Students noticed and liked the column-based design shared by both tools. See Sec-

tion 6.7.7 for further discussion.

Students preferred labeling all columns, as OPT did, whereas the version of the Stacker

used in the study labeled only the first. As a result, the Stacker now has a label for every

column. See Section 6.7.7 for further discussion.

For indicating the current execution state, OPT highlights the current corresponding line

and the previous corresponding line in the source code. In contrast, the Stacker presents

local evaluation contexts, which are program fragments with a hole that precisely indicate

the currently executed expression. Students had mixed preferences regarding the two tools.

They note that the Stacker is more accurate about the current execution state, and that

OPT is simpler because it shows less information on the screen and because it makes it

easier to relate the current execution state with the source program. See Section 6.7.1 for

further discussion.

OPT includes buttons for jumping to the start or end of the execution trace, a feature

absent in the Stacker. Students liked these buttons. See Section 6.7.15 for further discussion

on this design choice.

OPT represents environment relationships using arrows, while the Stacker displays ad-

dresses. Students generally found arrows more readable, though some noted that an arrow-

based UI could become overly cluttered as the relationships grow more complex. See Sec-
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tion 6.7.8 for further discussion on this design choice.

Unlike OPT, which does not display declared-but-uninitialized variables, the Stacker

represents them using a bomb emoji. Students preferred the Stacker’s approach, with many

commenting that it helped them realize such variables exist even before initialization. See

Section 6.7.3 for further discussion.

OPT is not always explicit about parent environments: typically omitting them when

the parent is the “global frame”. In contrast, the Stacker consistently displays parent envi-

ronments, a feature students preferred. See Section 6.7.3 for further discussion.

Students appreciated color-coded UI elements, which the Stacker uses extensively, but

OPT only color-code heap-allocated values (i.e., “objects”).

Overall, students noted that the Stacker presented more information and did so more

accurately. However, they also found it initially more overwhelming to use. See Section 6.7.5

for further discussion.

6.7 The Design Space Around Stacker

This section discusses the design choices around the current Stacker, their respective pros

and cons, and directions for future work. These choices include both design decisions made

in surveyed tools (Section 6.4) and new ideas inspired by the survey and the user studies

(Sections 6.5 and 6.6).

The discussion focuses primarily on two perspectives: the Programming Languages se-

mantics perspective—such as whether a design presents sufficient information to distinguish

programs with meaningfully different behaviors—and the UI perspective—such as accessi-

bility and how easily users can locate relevant information in the interface.

Sorva’s dissertation [74] surveys a broader collection of tools, including those that require

students to actively participate in constructing traces. His discussion emphasizes cognitive

dimensions more heavily. For example, Table 15.1 highlights various cognitive aspects of
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design. Readers interested in a cognitive perspective or a broader collection of tools are

encouraged to consult his dissertation, especially Chapter 15.

6.7.1 Presentation of the Current Task

Highlighting Related Source Code Region Many surveyed tools highlight a region of the

source code, with either a distinct background color or an arrow. Students appreciate this

feature (Section 6.6). Designers must choose between highlighting the line, as in the Env

tool (Figure 6.14), OPT (Figures 6.15 to 6.17), and JK (Figure 6.18), or highlighting the

term, as in Jeliot (Figure 6.19). Highlighting the term is preferable, as it is more precise and

has no apparent drawbacks. (Future Work: Highlight the current term.)

Highlighting the Current Environment Many surveyed tools also highlight the environ-

ment associated with the current task. The Env tool (Figure 6.14) uses a distinct border

color, while OPT (Figures 6.15 to 6.17) changes the background color. JV (Figure 6.18)

always places the current environment within the top-most stack frame. Jeliot (Figure 6.19)

displays the environment at the top of its “Method Area”. I personally find this kind of

highlighting helpful for identifying the current environment. (Future Work: Implement in

the Stacker a design similar to the Env tool.)

Previewing the Outcome of the Current Task The Stepper (Figure 6.20) is the only sur-

veyed tool that provides a preview of the current task’s outcome. In fact, it displays the

entire next state. While this is a useful feature, it must be designed carefully, especially

when the outcome involves substantial information (e.g., when the current task is a function

call).
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6.7.2 Presentation of the Continuation

Breaking the Continuation into Segments The Stepper (Figure 6.20) and the Env tool

(Figure 6.14) are the only surveyed tools that do not break the continuation into segments.

This did not appear to be a problem for students in the Stacker-vs-Stepper study (Sec-

tion 6.5). However, that study involved recursive functions with simple bodies, so the con-

tinuations were more regular than in most situations. It is conceivable that not segmenting

the continuation would become problematic when the continuation structure is more com-

plex.

A natural way to break the continuation into segments is to divide it into stack frames.

All other surveyed tools (Figures 6.13 and 6.15 to 6.19) adopt this approach. I am not aware

of any sensible alternative designs.

Evaluation Context vs. Instructions Details of the continuation—whether segmented or

not—can be presented as an evaluation context, as in the Stepper (Figure 6.20) and the

Stacker (Figure 6.13), or as a sequence of instructions, as in the Env tool (Figure 6.14). Unless

learning the instruction set is itself a goal, the evaluation-context approach is preferable: the

instruction-based approach introduces additional vocabulary, increasing the learning burden

and obscuring the connection between the continuation and the source code.

Integrating Environments with Stack Frames Some surveyed tools, including OPT (Fig-

ures 6.15 to 6.17), JK (Figure 6.18), and Jeliot (Figure 6.19), integrate environments into

stack frames. Others, including the Stacker (Figure 6.13) and the Env tool (Figure 6.14),

present environments and stack frames as clearly separate entities.

Clements and Krishnamurthi [12] points out that integrating environments with stack

frames may lead to a dynamic-scope misconception: the environment of the current frame

may or may not extend from the environment of the “next” frame, while the typical stack

arrangement visually suggests that it does. On the other hand, separating environments

100



from stack frames increases the number of visual elements. For tools that support a limited

language where the environment hierarchy is trivial (e.g., restricting function definitions to

the top-level block, as in JK and UUhistle), integration may be reasonable. But when the

environment hierarchy can be more complex, clearly separating the two concepts seems to

be the better design choice.

What to Include in a Stack Frame Presentation? A stack frame might present any subset

of the following information:

• the local continuation, which may be presented completely (as in the Stacker, Fig-

ure 6.13) or partially (as in JK, Figure 6.18);

• the associated environment (presented by all tools);

• the reason the stack frame was created (not explicitly shown in any surveyed tool);

To support all the exercises listed in Section 6.3, a tool likely needs to show both the

complete local continuation and the associated environment.

While no surveyed tool explicitly presents the reason a stack frame was created, they all

implicitly convey this information by showing function calls. However, this information is

lost once a function call becomes a stack frame. Students expressed dissatisfaction with this

disappearance (Section 6.5).

Presenting this information risks breaking authenticity—real language implementations

(unless in debugging mode) do not need to preserve the reason for each stack frame in order

to compute the final result. I believe the ideal design should retain this information in a

way that avoids misleading students into thinking that real implementations also preserve it.

(Future Work: Add a question mark icon to each stack frame and reveal the corresponding

function call when the user hovers over the icon.)
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6.7.3 Presentation of Environments

Substitution vs. Environments Substitution, as used in the Stepper (Figure 6.20), does

not require knowledge of environments or their hierarchical structure. As such, it may be

more approachable for beginning students than environment-based semantics (used in all

other surveyed tools).

However, substitution has several notable drawbacks:

• It has language limitations—it does not work well with mutable variables, which are

ubiquitous in modern programming languages.

• It presents usability issues—substituting a variable with its value or a function call

with its body often causes substantial changes to the program state.

• Substitution may promote the “calling copies values” misconception, which is one of

the known misconceptions (CallCopyStructs in Table 5.1).

• Substitution lacks authenticity with respect to real-world language implementations.

Compared to substitution, environments are more helpful for tracking function calls (Sec-

tion 6.5).

Environments are certainly the better choice for experienced students. Even for begin-

ners, I am not convinced that the benefits of substitution outweigh its usability issues or

justify the transition cost to an environment-based model (assuming these students eventu-

ally want to learn about mutable variables).

The Primordial Environment Both the Stacker (Figure 6.13) and the Env tool (Fig-

ure 6.14) acknowledge the existence of a built-in or primordial environment, but only the

Env tool displays it.

I find it unhelpful to show the primordial environment, as it provides no useful information

and occupies valuable screen space.
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Declared-but-not-initialized Variables Many surveyed tools do not show declared-but-

uninitialized variables in their environments. The exceptions are the Stacker (Figure 6.13),

the Env tool (Figure 6.14), and OPT with JavaScript (Figure 6.16). Showing these variables

is critical for understanding hoisting behavior, which is present in many modern languages

(e.g., Python and JavaScript, but not Java).

Consider the following two variants of the same program (used in Section 6.1 and Sec-

tion 6.4). In the first, the line y = x * 10 appears before x = 2:

x = 1

def addx(pr):

y = x * 10

x = 2

return x + pr[0] + pr[1]

addx([ 49, 51 ]) + x

In the second variant, the new line replaces x = 2:

x = 1

def addx(pr):

y = x * 10

return x + pr[0] + pr[1]

addx([ 49, 51 ]) + x

The two programs treat the variable y very differently: the first raises an error because

y refers to a variable that was declared but not initialized. The second binds y to 10. Yet,

the state just before y = x * 10 appears identical in OPT:
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Therefore, it is critical to show declared-but-uninitialized variables in languages that

exhibit hoisting behavior. Moreover, students reported appreciating this information (Sec-

tion 6.6).

The Environment Hierarchy Some surveyed tools, including the Stacker (Figure 6.13),

the Env tool (Figure 6.14), and Jeliot (Figure 6.19), always make the environment hierarchy

explicit. Others, like OPT with Python (Figure 6.15) and JavaScript (Figure 6.16), highlight

only the top-level environment. Some tools, like JK (Figure 6.18), do not indicate the

hierarchy, though users might infer it from the position of the bottom-most stack frame. I

believe it is best to always be explicit about the environment hierarchy.

Separating Parameters and Local Variables The Stacker (Figure 6.13)—like all other sur-

veyed tools (Figures 6.14 to 6.19) but unlike its predecessor [12]—does not distinguish be-

tween parameters and locally defined variables in environments. Clements and Krishna-

murthi [12] separate the two: each environment has two sections, presenting parameters and

local variables in their own areas without mixing them.
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In my experience, making this distinction has not been helpful. Unless the tool targets

a language where the distinction is meaningful (e.g., parameters are immutable), it is likely

better not to separate the two.

6.7.4 Presentation of the Heap

Separating Different Kinds of Heap-allocated Values JK (Figure 6.18) separates function

values and data structures. This makes sense for that particular tool, which imposes many

restrictions on functions and effectively ensures that all function definitions must appear in

the top-level environment.

Jeliot (Figure 6.19) separates classes and instances, which is appropriate for a tool de-

signed for Java—a language in which classes and instances are key concepts.

When the language includes first-class functions, I believe it is most sensible not to

separate functions from other heap-allocated values. Indeed, all applicable surveyed tools

(Figures 6.13 to 6.16) follow this design.

Color-coding vs. Shape-coding The Env tool (Figure 6.14) uses different shapes to distin-

guish function values and data structures. The Stacker (Figure 6.13) and JK (Figure 6.18)

use the same shape but different colors. OPT (Figures 6.15 to 6.17) uses both. Using both

is probably the most usable and accessible approach. However, I find the simpler methods

sufficient, and color-coding may be the easiest to implement.

Function Values A function value presentation might include any subset of the following

information:

• the function name

• the parameter list

• the function body
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• the associated environment

• the source code location

The three middle elements are essential for describing the program’s behavior. The

function name, shown by OPT with Python (Figure 6.15) and JK (Figure 6.18), and the

source code location, shown by the Stacker (Figure 6.13), are also helpful because they assist

users in connecting runtime state with the source program, which may aid understanding.

Note that functions do not always have names—OPT with Python uses the symbol λ to

represent lambda functions. (Anonymous functions are not supported in JK.)

Presenting function bodies can be tricky. Many surveyed tools do not present them at

all. Even the ones that do (i.e., the Stacker and the Env tool) do not display them by

default (Table 6.7). This is sensible: function bodies often contain a lot of text, which can

make the UI overwhelming. Moreover, showing function bodies may lead to misconceptions.

An earlier version of the Stacker always displayed function bodies, and some students (from

the PL course described in Chapter 9) who used that version asked whether the heap stores

copies of function bodies. That confusion seemed to disappear after the Stacker was updated.

Function environments are shown in the Stacker (Figure 6.13), the Env tool (Figure 6.14),

and Jeliot (Figure 6.19)3, but not in OPT (Figures 6.15 to 6.17) or JK (Figure 6.18). In

JK’s case, this might be reasonable since all environments are top-level due to its language

restrictions (Table 6.3). For languages without such restrictions, I believe showing the en-

vironment is preferable, as omitting it risks reinforcing a dynamic-scope interpretation of

functions.

The usefulness of presenting source code locations is unclear. The Stacker (Figure 6.13)

is the only surveyed tool that includes them. Even as the main developer of the Stacker, I

rarely find this information helpful for its intended purpose (relating function values back

to their source code). It’s difficult to map the location to a specific source code segment.
3Java objects/instances effectively serve as environments.
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A better design might highlight the relevant source code when users hover over the source

location.

Interestingly, while source code locations may not serve their intended purpose well, they

are useful for telling whether two heap-allocated functions were constructed by the same

code—if so, their source locations will be identical. That said, if the Stacker had always

shown the function name and parameter list (as many other tools do), I probably wouldn’t

have needed to rely on source locations for this.

Overall, I believe function names and parameter lists should always be displayed. Tools

might consider showing function bodies, but in a way that avoids the misconception that

bodies are duplicated on the heap. Source code locations are less important. (Future Work:

Change the Stacker so that function names and parameter lists are always shown, and revisit

the usefulness of source code locations after this update.)

Vector Indices Vector indices are shown in the Env tool (Figure 6.14), OPT (Figures 6.15

to 6.17), and Jeliot (Figure 6.19). I think it’s helpful to include indices. (Future Work:

Present vector indices in the Stacker.)

6.7.5 The Total Amount of Information On the Screen

It is important to present states precisely and accurately, but also to control the total

amount of information shown. In the Stacker-vs-OPT study (Section 6.6), many students

felt that the Stacker displayed too much information—so much so that some preferred OPT,

despite acknowledging the Stacker’s greater accuracy.

Existing tools suggest strategies for gradually revealing information, which partially mit-

igate this issue. For example, the Env tool (Figure 6.14) hides most details about function

values unless users hover over them (Table 6.7). The Stacker reveals those details only when

users click on the function’s source location (Section 6.1).
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6.7.6 Number of States

What States to Present? As expected, the surveyed tools vary significantly in the states

they present. I believe an ideal density should:

1. Avoid presenting states that are unlikely to be informative (e.g., reducing arithmetic

expressions). For example, the Stacker omits states related to conditionals because

students in the target population did not seem to struggle with them.

2. Ensure that each transition is easy to follow. For instance, advancing to the next state

should not result in two items disappearing and three new items appearing—such a

change would be difficult to track.

The Stacker presents many states related to function calls (see Section 6.1.2 for a full list

of possible states). These often correspond to substantial changes in the “Stack & Current

Task” column.

States right before mutations typically do not cause large UI changes, but are included

because they relate closely to aliasing—a well-known source of misconceptions [26, 38, 80].

Similarly, states before print statements are also retained, despite not triggering major

visual changes, because prior work Lu et al. [43] has shown that print behavior can be

confusing.

(Future Work: Having identified new misconceptions (see Chapter 5), I plan to revisit

which state types the Stacker presents. A notable omission in the current design is the state

immediately before constructing heap-allocated values. Scope-related misconceptions seem

connected to closure construction, while struct-copying misconceptions appear tied to data

structure creation. I plan to update the Stacker to include these states.)

Other surveyed tools appear to include all the states that the Stacker presents, as well

as additional ones—at least in the example program in Section 6.4. Given the consensus, I

suggest that future tools present at least the states that the Stacker presents.
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Multiple Levels of Detail In the Stacker-vs-Stepper study (Section 6.5), some students

suggested that it would be useful to identify the problematic function call using the Stacker

and then “zoom in” with the Stepper. The two tools differ significantly in the granularity of

steps they present.

The Stepper (Figure 6.20) provides multiple “Next” buttons to support different step

sizes. A key challenge in supporting multiple levels of density is communicating clearly what

each level means. In the same study, some students expressed confusion about the distinction

between the two “Next” buttons in the Stepper.

(Future Work: Add a button in the Stacker to support smaller step sizes.)

6.7.7 Major Areas

Arrangement of Areas The Stacker (Figure 6.13), the Env tool (Figure 6.14), OPT (Fig-

ures 6.15 to 6.17), and the Stepper (Figure 6.20) organize their visual elements into columns.

JK (Figure 6.18) and Jeliot (Figure 6.19) also use rectangular regions, but these are not ar-

ranged strictly as columns.

I believe the column-based layout is superior. Students also prefer it (Section 6.6), and

it aligns with the reading order of many natural languages.

Area Labels The Stacker (Figure 6.13), OPT (Figures 6.15 to 6.17), and Jeliot (Figure 6.19)

label all their major areas. The Env tool (Figure 6.14) does not label any. I believe tools

should include area labels—students appreciate them (Section 6.6), and there are no clear

downsides.

6.7.8 Textual vs. Arrow References

References are represented as textual labels, arrows, or both in the surveyed tools (Sec-

tion 6.4.3).

Labels necessarily occupy more screen space: each arrow must be replaced with one or
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Figure 6.24: Online Python Tutor presenting a cyclic data structure

Figure 6.25: Stacker presenting a cyclic data structure

more labels. This increase in visual information—especially text—can raise the cognitive

load for users. This might explain why some students found OPT more intuitive than the

Stacker for simple references (Section 6.6).

Labels are also harder to follow than arrows. When users see a reference source and want

to locate its target, an arrow provides a direct visual path. In contrast, labels require users

to search across the screen to match identifiers.

However, the usability of arrows is highly sensitive to layout. Aesthetic aspects such

as symmetry, edge crossings, and bends greatly impact graph readability [59]. Achieving a

clean layout is non-trivial. For example, Figures 6.24 and 6.25 show OPT and the Stacker

presenting essentially the same cyclic data structure—but the overlapping arrows in OPT
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arguably make the references harder to follow than in the Stacker.

I conjecture that labels are less sensitive than arrows to reference complexity.

Promising hybrid approaches include:

Textual + Highlighting Highlight the referenced item when users hover over one of its labels.

Color-coding Labels Use background color or even emojis to differentiate labels.

Toggle Between Addresses and Arrows Let users switch between representations; default

to arrows.

Show Arrows on Hover (JK’s Approach) Display arrows only when the label is hovered

over—reducing clutter while preserving clarity.

The Stacker originally avoided arrows because they were harder to implement on the

web and because the authenticity of labels was seen as valuable in the PL course, where the

Stacker was first deployed. After the Stacker-vs-OPT study (Section 6.6), I implemented the

“Textual + Highlighting” approach in response to student feedback (Section 6.2.8). (Future

Work: Implement the “Show Arrows on Hover” approach as well.)

6.7.9 Address Randomization

When (address) references are presented as labels, there is a choice between selecting

labels from a clear sequence (e.g., 0, 1, 2) or using random labels, as in the Stacker.

I argue that random labels are preferable because they offer greater authenticity—real

programming language implementations typically allocate resources in ways that appear

unordered from the programmer’s perspective.

However, random labels reduce reproducibility: two traces of the same program are

unlikely to use the same labels in the same way, making structural comparisons across traces

more difficult. This, in turn, complicates grading assignments involving the Stacker.
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The Stacker addresses this grading challenge by controlling randomization through a

seed. Permalinks (Section 6.2.5) preserve random seeds, ensuring consistent labeling. The

seed can also be specified manually (Section 6.2.6). For many assignments (e.g., the one

in Section 6.3.2), instructors can simply share permalinks with students when handing out

assignments. In my experience, this approach suffices, but instructors may also ask students

to use a specific seed.

The range of random addresses must also be chosen carefully. The Stacker uses natural

numbers, which better reflect real machine addresses. It further restricts the range to 100–

999 to avoid conflict with 0–99, which are convenient for illustrating programs involving

arithmetic, while still keeping the randomized labels easy to read and discuss.

6.7.10 Web-based vs. Desktop

A web-based approach offers several advantages:

Easy Setup Students only need a browser to use the Stacker.

Built-in Accessibility Font sizes can be freely adjusted.

Simple Sharing Traces can be shared via URLs (as permalinks when no server state is

required).

Editable Traces Since traces are HTML, users can edit them via browser developer tools.

The Stacker was originally a desktop tool. I moved it to the web for ease of setup—an

unintended benefit was that permalinks turned out to be helpful in education.

Web-based tools differ in their server cost models. OPT appears to be the most expen-

sive [32]. In contrast, the Stacker operates with close to zero server cost:

• The only cost is serving the initial page load, which is static and therefore cacheable

via CDNs.
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• Evaluation happens entirely in the browser.

• Permalinks are self-contained GET requests, requiring no server-side state.4

• There is no persistent server state, so there are no ongoing space or time costs.

6.7.11 Supporting Multiple Languages

For multi-language tools that also support source-to-source translation, the UI design

can be more complex. In the Stacker, users write programs in the SMoL Language, but can

view traces in all supported languages. This distinction can be confusing. To mitigate this,

the Stacker emphasizes the words “edit” and “present” in the UI:

Ideally, a multilingual tool should let users read and write in the same language. But

this requires either separate runtimes for each language (as in OPT), or a core language

plus compilers from each source language to the core. Maintaining multiple runtimes is a

major undertaking. The core-language approach is also difficult—especially for traditional

textual editors—because many language constructs fall outside the core, and even supported

constructs may not map cleanly (e.g., Python’s nonlocal and global keywords).

A multi-syntax structural editor might offer a more user-friendly editing experience while

avoiding the engineering overhead of full multi-language support. (Future Work: I plan to

add such a structural editor to the Stacker.)

6.7.12 Smooth Transitions Between States

State transitions are animated in JK (Figure 6.18) and Jeliot (Figure 6.19). Jeliot even

provides a slider to control animation speed. Smooth transitions help users follow state
4GET requests typically have size limits ranging from 2 KB to 8 KB depending on the browser and server

configuration. This bounds the size of programs that can be shared. In practice, however, this has not posed
a problem.
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updates, though they may be challenging to implement.

6.7.13 Accessibility Concerns

The Stacker’s web-based architecture makes it easy to adjust font sizes.

The color palette (Table 6.1) is designed with accessibility in mind:

• Background colors were verified using Adobe Color [14] to be colorblind-friendly.

• Most foreground-background combinations meet WCAG 2.0 level AAA contrast stan-

dards, verified via WebAIM [88]. The only exception is white on #646464, which meets

level AA.

6.7.14 Prerequisite Knowledge

There is a trade-off between faithfully representing program execution and minimizing

the prerequisite knowledge required. Using standard terminology enhances authenticity, but

may confuse students unfamiliar with certain concepts, requiring instructors to intervene.

How to balance this trade-off depends heavily on the teaching context; there is no uni-

versally optimal solution.

The Stacker currently avoids relying on system-level course knowledge by making a few

minor adjustments:

• Using “current task” instead of “program counter”.

• Displaying memory addresses as small random numbers (100–999) instead of hexadec-

imal.
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6.7.15 Trace Navigation

First & Last Buttons

In the Stacker-vs-OPT study (Section 6.6), students expressed appreciation for OPT’s

“First” and “Last” buttons (Figures 6.15 to 6.17), which jump to the start and end of the

trace.

A “First” button is also present in the Env tool (Figure 6.14), OPT, and JK (Figure 6.18).

The Stacker effectively provides this functionality: users can click “Stop” and then “Run”

to reach the first state. However, a single click would be more convenient. (Future Work:

Add a “First” button to the Stacker.)

A “Last” button introduces a more nuanced design challenge. The final state of a trace

may not exist if the program runs indefinitely.

Still, several tools provide a “Last” button, including the Env tool (Figure 6.14), OPT

(Figures 6.15 to 6.17), and the Stepper (Figure 6.20). These tools handle long or infinite

traces differently:

• The Env tool imposes a cap of 1000 steps. It appears to use heuristics to detect certain

kinds of infinite loops. For example, if the source code includes while (true), it shows

a warning:

The loop has encountered an infinite loop. It has no base case.

• OPT imposes a cap of 1000 steps. If the trace exceeds this, it warns:

Stopped after running 1000 steps. Please shorten your code, since Python Tutor is not

designed to handle long-running code.

• The Stepper pauses at the 500th state and prompts the user to continue. Users can

extend the limit incrementally or remove it entirely. If they decline, the last traced

state becomes the final one.
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I believe the Stepper’s design is the most effective. (Future Work: Implement this

design in the Stacker.)

Progress Bar

A progress bar for navigating the trace is available in the Env tool and OPT. Its utility

is unclear. The Stacker-vs-OPT study (Section 6.6) did not find notable student preferences

for this feature.

Further investigation is needed to determine whether progress bars are genuinely useful,

and if not, how they might be redesigned to better support trace navigation.

6.7.16 Editable Traces

When visualizations are instructor-provided, it can be useful to annotate and customize

them: adding text, arrows, and other highlights to match specific learning objectives, ad-

justing step granularity, or adding control buttons to allow students to skip certain steps.

Web-based tools naturally support editing to some extent (Section 6.7.10), but the level

of support is highly dependent on the underlying technology. For example, states presented

as backend-rendered images are much less editable than those rendered as HTML or SVG.

Some editing tasks, such as adding control buttons, require in-depth knowledge of web

technologies.

JK appears to be the only surveyed tool that allows users to add annotations to traces.

It can even annotate traces generated by other tools, such as OPT, and, notably, the editing

experience is WYSIWYG [71].

A future direction for the Stacker is to support exporting traces as HTML files with

the contenteditable flag [15], allowing modern web browsers to function as WYSIWYG

editors for the exported content.
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CHAPTER 7

MISINTERPRETERS

7.1 Misinterpreters and Misconceptions

A misinterpreter is an interpreter that executes programs incorrectly. Misinterpreters

are closely related to misconceptions, which are patterns of mistakes (Section 2.1). In the

context of understanding program outputs, a mistake is an incorrect pair of a program and an

output. A misconception, then, can be understood as a systematic pattern of such incorrect

pairs—an incorrect mapping from programs to outputs.

Interpreters precisely define mappings from programs to outputs. By extension, misinter-

preters provide a rigorous way to formalize misconceptions. A misinterpreter is essentially

a definitional interpreter for a misconception.
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7.2 The Value of Misinterpreters

7.2.1 Detecting Problematic Programs

Suppose I give students the following program:

(defvar x 12)
(deffun (f x)

(set! x 0))
(f x)
(print x)

This program outputs 12. Now imagine a student predicts it will output 0, because “in f,

x is set to 0”. What misconception underlies this prediction?

In fact, at least two distinct misconceptions could lead to this wrong answer:

CallByRef The parameter x aliases the top-level variable.

FlatEnv There is only one environment, so the parameter overwrites the top-level variable.

This example highlights a common challenge in misconception research: a single incorrect

answer can stem from multiple, distinct misconceptions.

Failing to detect such ambiguity can be problematic. For example, if I overlook the

possibility that FlatEnv also explains the wrong answer, I might incorrectly assume the

student holds the CallByRef misconception. In that case, I might explain why 12 is

correct in a way that aims to address CallByRef:

You might think that the function call (f x) binds the parameter x to the top-

level x, so changing the parameter would change the top-level variable. However,

variables are bound to values, so the parameter x is bound to 12, the value of

the top-level x.
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This explanation would likely not help a student who holds the FlatEnv misconception

and might even be counterproductive. Therefore, it is crucial to reliably detect whether a

wrong answer corresponds to multiple misconceptions.

However, detecting such ambiguity becomes time-consuming and error-prone as the num-

ber of misconceptions or programs grows. Misinterpreters help manage this complexity (as

shown in Figure 7.1): by running a program through both the reference interpreter and

each misinterpreter, we can check whether multiple misinterpreters produce the same wrong

answer, suggesting ambiguity.

7.2.2 Fixing Test Programs

In addition to detecting ambiguity in test programs, misinterpreters also help tutorial

designers develop better programs. For example, suppose we change the parameter name x

and its references inside the function to y. Does this fix the problem? It is difficult to tell

by manually interpreting the new program against all existing misconceptions. Running the

modified version through the interpreters efficiently confirms that the wrong answer 0 no

longer results from the FlatEnv misconception (Figure 7.2).

7.2.3 Maintaining a Growing Set of Misconceptions and Programs

Suppose we have gone through the laborious process of building an inventory of mis-

conceptions and programs that unambiguously detect those misconceptions. What happens

if we discover a new misconception? Each newly identified misconception may invalidate

previously reliable programs. Therefore, it is critical to revalidate the entire inventory to

check for any new ambiguity. Without misinterpreters, this revalidation would be tedious;

with misinterpreters, the process can be largely automated.
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Figure 7.1: Running a program through misinterpreters and the reference interpreter reveals
that the wrong answer 0 can result from both the FlatEnv and CallByRef misinter-
preters.

Figure 7.2: Running a modified program confirms that the wrong answer 0 cannot result
from the FlatEnv misinterpreter.
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7.3 Future Work

7.3.1 Synthesizing Diagnostic Programs

Section 7.2 illustrates how misinterpreters help instructors manually refine their test pro-

grams. This process could likely be performed automatically via program synthesis. The goal

would be: given a reference interpreter R and a set of misinterpreters {Mi}, find programs

p such that:

• At least one misinterpreter produces a wrong answer: ∃i. Mi(p) ̸= R(p)

• No two misinterpreters produce the same wrong answer: ¬∃i, j. i ̸= j ∧ Mi(p) =

Mj(p) ̸= R(p)

7.3.2 Synthesizing Misinterpreters

A more ambitious application of program synthesis is to synthesize misinterpreters them-

selves, rather than test programs. Since misconceptions can be modeled by misinterpreters,

and each misinterpreter corresponds to a cluster of mistakes, the task of identifying mis-

conceptions could be reframed as: given a distribution of mistakes, synthesize a plausible

collection of misinterpreters that explain them. Ideally, plausibility would be informed by

cognitive models of human reasoning; in practice, minimizing the number of misinterpreters

may serve as a reasonable heuristic.

7.3.3 Mystery Languages

The idea of misinterpreters is related to mystery languages [18, 56]. Both approaches

use evaluators that represent alternative semantics for the same syntax. However, the two

are complementary. In mystery languages, instructors design the semantic space with peda-

gogical intent, and students must create programs to explore that space. Misinterpreters, in
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contrast, are driven by student input, while programs are provided by instructors. The two

approaches also differ in their goals: mystery languages encourage students to experiment

with language behavior, while misinterpreters aim to capture students’ misconceptions.

It remains future work to investigate whether some misinterpreters could serve as effective

mystery languages.

122



CHAPTER 8

MULTILINGUAL SUPPORT FOR SMOL

This chapter presents and discusses the SMoL Translator, a tool that translates SMoL

programs into several commonly used programming languages. Section 8.1 describes the

SMoL Translator and its key design choices. Section 8.2 provides a broader discussion.

8.1 The SMoL Translator

Figure 8.1 illustrates the UI of the SMoL Translator, which translates SMoL programs

to JavaScript, Python, Scala 3 [WIP], and a pseudocode syntax.

The rest of this section presents key design decisions in the translation process. The

presentation can be read as an experience report, which may interest readers looking to

design similar tools. Perhaps more interestingly, it serves as an evaluation of how standard

the SMoL Language is: if the SMoL Language were entirely standard, the translation would

be straightforward, with few design decisions to make.

To make the content more digestible, I divide the discussion into the following subsections:

• Section 8.1.1 discusses design decisions that are broadly applicable, affecting many
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Figure 8.1: The SMoL Translator highlighting the function call (addx 0)

supported target languages or commonly used programming languages.

• Section 8.1.2 focuses on design decisions likely specific to JavaScript.

• Section 8.1.3 focuses on design decisions likely specific to Python.

• Section 8.1.4 focuses on design decisions likely specific to Scala.

8.1.1 Widely Applicable Design Decisions

Infix Operations

The SMoL Language consistently uses prefix notation for all primitive operations. How-

ever, many languages offers certain primitive operations as infix expressions, such as “a + b”.

In such languages, parentheses are often need to disambiguate nested infix expressions, for

example, differentiating between “a - (b + c)” and “(a - b) + c”.

I considered the following solutions for handling nested infix expressions:

1. Parenthesize every infix operation.
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2. Parenthesize an infix operation only when ambiguity exists.

3. Parenthesize every infix operation that appears immediately inside another infix oper-

ation.

The SMoL Translator implements solution 3. The issue with solution 1 is that it outputs

programs like f((a + b)), which appear non-idiomatic.

Solution 2 is very demanding on engineering effort. Different languages have different

precedence rules, resolution rules, etc. Therefore, the translator would have to know about

every single language’s rules. Furthermore, in some cases these rules are often somewhat

embedded in their implementations, making it hard to reproduce exactly. Finally, they may

change across versions.

In contrast, solution 3 works well in my experience and requires considerably less engi-

neering effort than solution 2.

Alternative Syntax for if Statements

The SMoL Language uses a uniform syntax for if expressions. However, many languages

provide an alternative syntax for if expressions when used as statements. Consider the

following SMoL program

(defvar a 2)

(defvar b 3)

(defvar c (if (< a b) a b))

(if (< a b)

(print c)

(print (+ a b)))

A straightforward translation to JavaScript would use the conditional operator for both if

expressions:

let a = 2;
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let b = 3;

let c = (a < b) ? a : b;

(a < b) ? console.log(c) : console.log(a + b);

However, the output is likely more idiomatic if the second if expression is written as an if

statement:

let a = 2;

let b = 3;

let c = (a < b) ? a : b;

if (a < b) {

console.log(c);

} else {

console.log(a + b);

}

This issue also applies to Python, although the concrete syntax is different:

a = 2

b = 3

c = a if a < b else b

if a < b:

print(c)

else:

print(a + b)

The SMoL Translator uses the statement-specific syntax whenever applicable to produce

more idiomatic output.
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Inserting “return”s

The SMoL Language dictates that functions return the value of the last expression in

their body. However, many languages use explicit “return” statements (typically written

as the keyword return followed by an expression, although the exact syntax may differ in

some languages). When translating to such languages, the translator must insert appropriate

“return” statements.

Inserting “return” keywords introduces a perhaps interesting interaction with condition-

als: When the result of an if expression needs to be returned, and the expression is written

in statement syntax, the “return” keyword must be inserted into the branches of the condi-

tional.

The insertion of “return” also introduces a perhaps interesting interaction with assign-

ment expressions. Consider the following SMoL program:

(deffun (swap pr)

(defvar tmp (vec-ref pr 0))

(vec-set! pr 0 (vec-ref pr 1))

(vec-set! pr 1 tmp))

A straightforward JavaScript translation would be:

function swap(pr) {

let tmp = pr[0] ;

pr[0] = pr[1] ;

return pr[1] = tmp ;

}

While the translation is authentic, it is not ideal: Relying on the value of an assignment ex-

pression is widely considered poor practice, except for a few specific use cases (e.g., x = y = e),

so the output program is not idiomatic; In this case, the translation also fail to preserve the

semantics because, in the SMoL Language, assignments return the None value rather than
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the more meaningful result.

To address this, the SMoL Translator inserts an empty “return” when the expression to

be returned is an assignment.

Inserting “print”s

In the SMoL Language, expressions written in top-level blocks are automatically printed,

following the tradition of Lispy languages. However, in many other languages, top-level

expressions are not printed by default.

Currently, the SMoL Translator inserts a “print” for a top-level expression only if it is

not an assignment. However, this heuristic does not always work as intended. Consider the

following SMoL program:

(deffun (inc-first ns)

(vec-set! ns 0 (+ (vec-ref ns 0) 1)))

(defvar my-numbers (mvec 1 2 3))

(inc-first my-numbers)

In this case, the translator would insert a print for (inc-first my-numbers), but this is

incorrect. I see two possible solutions to address this issue:

1. Change the semantics of the SMoL Language so that it does not automatically print

top-level expressions;

2. Infer the types of top-level expressions and print only those whose type is not None.

I plan to implement solution 1 in the future.

Variable Naming Styles and Restrictions

The SMoL Language uses kebab-case for naming (e.g., vec-len). However, in many

programming languages the hyphen (-) character is not allowed in variable names. These
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languages typically use underscores (e.g., vec_len) or capitalization (e.g., vecLen or VecLen)

to separate meaningful components.

In addition to character restrictions, many languages also have reserved names, such as

var in JavaScript or nonlocal in Python.

One simple solution is to replace invalid variable names with generic ones, such as x1.

However, the SMoL Translator takes a more sophisticated approach by outputting names

that resemble the original names. For example, it translates names like abc-foobar to

abc_foobar when targeting Python, and to abcFoobar when targeting JavaScript or Scala.

If a natural translation results in collision with a reserved name, the translator prefixes the

variable name (e.g., $var) to avoid conflicts.

Data Types

The SMoL Language assumes no type system. However, many languages, including a

supported language, Scala, do have type systems. When translating to a typed language,

preserving semantics can be challenging because many dynamic errors become static errors.

This affects the program output, as a static error prevents any code from being executed,

including prints that “happens before” the error. Furthermore, if the type system is not suf-

ficiently expressive, some SMoL programs might not be typeable, resulting in no translation;

On the other hand, if the type system is too sophisticated, type inference becomes difficult.

Currently, the SMoL Translator infers types using a unification-based algorithm, which

can infer a type for the whole program if it can be “simply typed” in the sense of Simply-

Typed Lambda Calculus. There is no strong rationale behind this design. An alternative

design could involve making the SMoL Language typed, which is discussed in Section 8.2.

Mutability of Variables

In the SMoL Language, all variables are defined in the same way, regardless of whether

the program mutates them or not. However, many languages distinguish between mutable
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and immutable variables, and it is more idiomatic in those languages to specify whether a

variable is (im)mutable.

To produce the most idiomatic translation, the translator should specify the mutability

of variables. However, this approach may not always be desirable in an educational context,

where the goal is sometimes to let students figure out which variables are mutated.

The SMoL Translator uses a heuristic that has worked well in practice: When the source

program involves any mutation, the translator declares all variables as mutable; otherwise,

all variables are declared immutable.

8.1.2 Design Decisions Specific to JavaScript

JavaScript is known for its reluctance to raise errors. Consider the following SMoL

program, which produces an out-of-bounds error:

(defvar x (vec-ref (mvec 1 2 3) 9))

x

A straightforward JavaScript translation is:

let x = [ 1, 2, 3 ][9];

console.log(x);

The JavaScript version does not raise an error. In general, JavaScript does not throw an

error when accessing an array out of bounds, nor when dividing by zero. See [87] for a

perhaps amusing collection of non-erroring programs in JavaScript and other languages.

The SMoL Translator opts for the straightforward translation, even at the cost of occa-

sionally not preserving the original semantics.

130



8.1.3 Design Decisions Specific to Python

Lambda Must Contain Exactly One Expression

Consider the following SMoL program, which prints 42:

(defvar f (lambda (x)

(defvar y 1)

(+ x y)))

(f 41)

This program does not have a straightforward Python translation because, in Python, lambda

bodies must contain exactly one expression. A workaround is to declare the local variable

as a keyword argument:

f = lambda x, y=1: x + y

print(f(41))

However, this approach does not work if a local variable depends on parameters (e.g.,

(defvar y (+ x 1))).

The SMoL Translator takes an easier approach: It refuses to translate lambdas that

involve definitions or multiple expressions to Python.

Scoping Rules

Python does not have a syntax for variable declaration or definition. When Python

programmers want to define a variable, they do so by assigning a value to it. Python

disambiguates between definition and assignment using the nonlocal and global keywords.

Roughly speaking, a variable x is considered locally defined in the current function body (or

the top-level block if there is no enclosing function body) unless it is declared as nonlocal

or global. If declared nonlocal, the variable is considered defined in the nearest applicable

function body, following typical lexical scoping rules; if declared global, the variable is
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considered defined in the top-level block. The SMoL Translator translates both (defvar

x e) and (set! x e) to x = e, inserting nonlocal or global declarations as needed to

resolve ambiguity. However, some programs contain ambiguity that cannot be resolved. For

example, the following SMoL program results in an error because it mutates a variable before

defining it:

(set! x 2)

There is no Python translation that preserves the same semantics. In such cases, the trans-

lator produces translations that may not preserve semantics. For the example above, the

translator outputs:

x = 2

8.1.4 Design Decisions Specific to Scala

In Scala, when declaring or using a nullary function, it is idiomatic to omit the empty

argument list if and only if the function has no side effects. Currently, the SMoL Translator

omits the empty argument list only if the entire program has no side effects. A more precise

translation, which considers individual function side effects, is planned for future work.

8.2 Discussion

The SMoL Language (Chapter 3) and the SMoL Translator were developed to present

programs illustrating SMoL Characteristics across multiple programming languages. This

section evaluates how well the system (i.e., the SMoL Language and the SMoL Translator)

serves this purpose and discusses potential improvements.

8.2.1 Desired Goals for Multilingual Presentation

Several goals are desirable for multilingual presentation:
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Straightforwardness There is a clear one-to-one correspondence between terms.

Totality A program exists in every language of interest.

Semantics preservation The programs produce essentially the same output.

Idiomaticity Each program looks idiomatic in its target language.

The SMoL Translator achieves these goals in many cases; however, there are situations

where some properties are compromised:

• Totality is compromised when the target language is typed or has restrictions on

lambdas (see data types in Section 8.1.1 and Python lambdas in Section 8.1.3).

• Semantics preservation is compromised when the target language does not automati-

cally print top-level expressions, is typed, exhibits unusual behavior with certain prim-

itive operations, or has nonstandard scoping rules (see “prints” and data types in Sec-

tion 8.1.1, JavaScript error issues in Section 8.1.2, and Python scope in Section 8.1.3).

• Idiomaticity is compromised when the target language uses infix syntax, declares mu-

table and immutable variables differently, has nonstandard scoping rules, or uses non-

standard conventions for writing argument lists (see infix operations and mutability in

Section 8.1.1, Python scope in Section 8.1.3, and Scala’s argument list conventions in

Section 8.1.4).

Straightforwardness is always preserved, partly because the translation is mostly a struc-

turally recursive algorithm, which maintains this property at low cost, and partly because I

consider it critical for a multilingual learning experience.

8.2.2 Supported Constructs

As future work, I plan to include looping constructs, which are similarly widespread, as

well as generators and async functions, which are becoming increasingly important.
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8.2.3 Type Systems

Introducing a type system to the SMoL Language could improve totality and better

preserve semantics when translating to typed languages. However, this comes at the cost

of limiting the programs we can express, and would surely worsen semantics preservation

when translating to untyped languages. Therefore, I do not plan to pursue this as a future

direction. However, there could be a separate discussion on whether we should have a

standard model of typed languages that cover both dynamics and statics (i.e., type systems)

(Section 10.1).

8.2.4 Statements

The SMoL Language could become more similar to other languages, making the transla-

tion process easier, by adding statement-specific syntax for if expressions or using explicit

“return” statements. However, these changes do not seem to offer significant benefits for

presenting programs but would complicate the SMoL Language. Therefore, I do not plan to

implement these changes.

8.2.5 Automatic Printing of Top-Level Expressions

Disabling automatic printing of top-level expressions in the SMoL Language could help

preserve semantics for a broader range of programs, with minimal downside—other than

requiring programs to print explicitly. This is a potential direction for future work.
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CHAPTER 9

STUDIED POPULATIONS

The majority of this work was conducted with students in a “Principles of Programming

Languages” course at a selective, private U.S. university (also referred to as the PL course or

US1). The course uses Programming Languages: Application and Interpretation (PLAI) [70]

as its textbook and enrolls approximately 70–75 students per year. It is not a required

course; students take it by choice. Virtually all are computer science majors, most in their

third or fourth year of undergraduate study, with around 10% being graduate students. All

have taken at least one semester of imperative programming, and most have had significantly

more. Most students have also completed close to a semester of functional programming.

One study was conducted in an accelerated introductory course at the same university

as US1 (also referred to as the Accelerated Intro course). Most students in this course had

some prior programming experience. To enroll, students were required to read parts of How

to Design Programs (HtDP) [23] and successfully complete a series of Racket programming

exercises.

Several studies were replicated with other populations:

PL Course at another U.S. University A primarily Hispanic public university in the U.S.
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(also referred to as US2). Its student demographics differ significantly from those at

US1. The Tutor was deployed in a third-year programming languages course in Spring

2023, taken by 12 students. Students were required to have completed two introductory

programming courses focused on C++.

PL Course at a Belgian University A research university in Belgium (also referred to as

Belgium). This course closely mirrors the PL course at US1: it also uses PLAI and

reuses most of the same assignments. In addition, it covers JavaScript and asyn-

chronous control flow, Rust and ownership/borrowing, TypeScript and gradual typing,

and provides a brief introduction to OCaml (presented as an industry-strength coun-

terpart to the PLAI teaching language). A total of 136 students took the course.

Project-Based PL Course at a Swedish University A research institution in Sweden (also

referred to as Sweden). Students in this course had previously completed a Python

course. The course focuses on creating simple programming languages in Ruby, with

a preparatory course covering fundamental theory (e.g., lexing and parsing). During

the project course, students attend four lectures on compiler structuring topics such as

grammars, lexical analysis, and variable scoping. The study was mandatory, published

at the beginning of the course, and students were encouraged to complete it by the

midpoint of the semester, before beginning their implementations.

These additional populations differ in important ways from the original group and help assess

whether the problems identified are specific to US1 or generalize across contexts.
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CHAPTER 10

DISCUSSION

10.1 Extending SMoL with Types

Many modern programming languages include a type system. This section explores the

possibility of defining a standard model similar to SMoL but incorporating a type system.

Modern type systems are generally expressive enough to assign types to many SMoL

programs. In particular, they typically support:

• product-like types (e.g., tuples and structures),

• sum-like types (e.g., enums),

• types for recursive data structures (e.g., algebraic data types and recursive types), and

• parametric polymorphism (e.g., generics).

However, there is little consensus on how these types should be represented, making it

difficult to draw connections between languages. Consider the following program, which

constructs a self-referencing value:
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(defvar x (mvec 1 0 2))

(vec-set! x 1 x)

(vec-len x)

There are numerous approaches to assign types to this program. For example:

1. Languages with a “top” type (e.g., Object and Any) allow programmers to declare the

array elements as the “top” type.

2. Languages with union types (e.g., TypeScript and Flow) permit the array elements to

be a union of numbers and arrays of the same kind.

3. Languages with inheritance (e.g., Java) enable programmers to define a base interface

or class implemented by two specific subclasses—one wrapping an array and the other

wrapping a number—allowing the array elements to be of the base type.

4. Languages with algebraic data types (ADTs) (e.g., OCaml) let programmers define an

ADT with two variants—one for arrays and one for numbers—so the array elements

belong to the ADT type.

While approaches 1 and 2 may seem similar, the others result in significantly different pro-

grams.

It remains unclear how to define a standard model that accommodates these variations

in type systems. Even if such a model were possible, the substantial differences between

languages make it challenging to teach type systems as part of a unified standard model.

10.2 Why Are Students More Likely to Make Mistakes in

Certain Cases?

In Section 4.4, we observed that some questions are more difficult than others, even

when they cover the same topics and are designed to detect the same misconception. It

138



is unsurprising that question difficulty varies within the same tutorial: some questions can

reveal more misconceptions, offering students more opportunities to make mistakes. What

is more interesting, however, is that the same misconception is more likely to be triggered

by certain questions than by others.

One possibility is that unknown or latent misconceptions overlap with the targeted ones,

providing more pathways to errors. Knowledge in Pieces (KiP) offers an alternative per-

spective that may explain this phenomenon (see [17] for an accessible introduction). A key

concept in KiP is that of p-prims, which diSessa [17] defines as:

P-prims are elements of intuitive knowledge that constitute people’s “sense of

mechanism”—their sense of which happenings are obvious, plausible, or implau-

sible, and how one can explain or refute real or imagined possibilities.

diSessa [17] provides several examples of p-prims in physics:

1. Increased effort yields greater results;

2. The world is full of competing influences, where the stronger one “gets its way”, even

if accidental or natural “balance” sometimes exists;

3. The shape of a situation determines the shape of the action within it (e.g., orbits

around square planets are recognizably square).

and in mathematics:

1. Multiplication makes numbers bigger;

2. A change in a given quantity generally implies a similar change in a related quantity;

3. Negative numbers cannot apply to the real world.

P-prims have several notable characteristics [17]:

• They typically—but not universally—work.
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• They are context-sensitive: whether a p-prim is activated depends on how a task is

framed and the person’s “frame of mind” at the time.

• They cannot be consciously considered or rejected, as they are not tied to explicit

reasoning and are often applied without awareness.

Unlike misconceptions, p-prims are “both smaller and more general …, conceived of as in-

volved in and contributing to both naive and expert understanding” [34]. Sherin, Krakowski,

and Lee [69] provides more examples of how p-prims may assemble to form (potentially in-

correct) conceptions.

It is likely that some of the misconceptions I observed are rooted in underlying p-prims.

Because p-prims are context-sensitive, a misconception that is more easily triggered by one

program than another likely reflects the activation of a p-prim. It appears that nearly all

the misconceptions studied fall into this category (Section 4.4.2). Identifying the underlying

p-prims remains future work.

One potential p-prim I have identified is: “Definitions can be ignored until the variables

are referenced.” This appears to be a p-prim because it feels intuitive, often yields correct

results, is context-sensitive (more likely to be applied when the expression is complex, less

likely in step-by-step reasoning), is typically applied unconsciously (in my own experience),

and is used even by experts (e.g., myself).

I suspect this p-prim underlies the Lazy, StructByRef, DeepClosure, and po-

tentially all struct-copying misconceptions (see Section 5.1 for definitions). Consider the

following example of StructByRef, repeated from Table 5.1:

(defvar x 3)
(defvar v (mvec 1 2 x))
(set! x 4)
v

A student might reach the misconception-related wrong answer #(1 2 4) through reasoning

influenced by this p-prim:

140



1. x is initially bound to 3;

2. v is defined using the expression (mvec 1 2 x), but the student ignores the definition

for now;

3. x is then updated to 4;

4. When finally evaluating v, the student revisits the ignored expression (mvec 1 2 x)

and uses the current value of x, yielding #(1 2 4).

A similar pattern appears in the DeepClosure misconception:

(deffun (foo)
(defvar n 0)
(deffun (bar)

(set! n (+ n 1))
n)

bar)
(defvar f (foo))
(defvar g (foo))

(f)
(g)
(f)

Here, a student might reach the incorrect answer 1 1 1 by similarly ignoring definitions

until use:

1. f is defined as the result of evaluating (foo), but the student ignores this evaluation

for now;

2. g is defined similarly;

3. When evaluating f, the student evaluates (foo) and concludes that it returns a bar

function with a fresh n initialized to 0, so (f) returns 1;

4. The same reasoning is applied again to g, and then again to f.
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A promising direction for future work is to investigate whether people actually exhibit

this tendency when reading programs (e.g., through an experiment similar to [16]), whether

these misconceptions can be unified, and whether the corresponding refutation texts can be

improved based on a deeper understanding of the underlying p-prims.

10.3 How Well Do Misinterpreters Model Misconceptions?

(Mis)interpreters are easier to write when the semantics are inductively defined over syn-

tactic structure. As a result, modeling misconceptions as misinterpreters inherently biases

the representation toward misconceptions that are consistent across contexts and indepen-

dent of syntactic details. However, students’ misconceptions do not always follow these

patterns. For example, when reasoning about variable lookup, a student might hold a mis-

conception such as, “I read backwards until I find the variable I’m looking for.”1 Such

misconceptions are difficult to model with interpreters, because the student’s reading strat-

egy does not necessarily align with the syntactic structure that interpreters typically operate

on.

Moreover, a misinterpreter applies its incorrect interpretation uniformly across all pro-

grams, whereas students appear more likely to exhibit a misconception in some programs

than in others (Section 10.2).

Therefore, misinterpreters may capture some misconceptions poorly and may fail to cap-

ture others entirely. Nonetheless, as a model for representing misconceptions, they remain

useful: misinterpreters provide a clear and accessible way to define misconceptions and sup-

port the development of high-quality assessments. As George Box said, all models are wrong

but some are useful [6].
1Credit to Will Crichton.
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10.4 Modifying SMoL Tutor to Teach a Different Semantics

The Tutor is designed to be compatible with languages that are not exactly SMoL but

are semantically close. See Section 4.6.6 for a discussion of how the Tutor handles differences

among the supported languages.

In principle, the SMoL Tutor can be adapted to teach a substantially different semantics.

However, since it was not originally designed with this level of flexibility, such changes would

likely require significant modifications to the source code.

For example, the R language exhibits copy-on-write behavior, which more closely resem-

bles a combination of the CopyStructs misconceptions than standard SMoL. Adapting

the Tutor for R would involve several key steps:

1. Replacing the current reference interpreter with one that reflects the new semantics.

2. Reclassifying the old reference interpreter as a misinterpreter.

3. Re-running all tutorial programs to ensure that each incorrect answer still maps to at

most one misinterpreter.

In addition, the Tutor’s explanations must be revised to align with the terminology and

conceptual framework of the new semantics.

10.5 Misconceptions and Programming Language Design

Many authors have argued for designing programming languages with human factors

in mind. Several notable groups of authors have advanced this perspective, including the

Natural Programming Project [46, 48, 50], Hanenberg et al. (e.g., [25, 52]), and Stefik et al.

(e.g., [61, 82]).

However, no matter how a programming language is designed, it must have a consis-

tent semantics. Tunnell Wilson, Pombrio, and Krishnamurthi [81] found that people often
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disagree about language behavior—and sometimes even with themselves. My own work on

misconceptions reveals further examples of such inconsistencies (Chapters 4 and 5).

Even when there is some consistency, language design should not be driven solely by the

popularity of particular conceptions. For example, dynamic scope (including the FlatEnv

misconception) is widely regarded as problematic due to the difficulty of managing variable

access, which can lead to security vulnerabilities and other issues. As a result, a language

should avoid behaving like FlatEnv, no matter how widespread the misconception is.

As another example, a native implementation of CallCopyStruct frequently copies

data structures, which is computationally expensive. Smarter strategies—such as the copy-

on-write mechanism used in R—do exist, but they introduce a more complex runtime and

result in less predictable execution times. Given these trade-offs, it may not be ideal for a

language to always behave like CallCopyStruct. Nevertheless, offering both behaviors—

with SMoL-style semantics as the default—could be a reasonable compromise.

10.6 Grading Tutor Assignments

Instructors can access student solutions through two mechanisms. First, the Tutor can log

student data (Section 4.1.6). Second, the Tutor prompts students to save completed tutorials

as PDFs (Figure 4.4), both to support review and to provide instructors with evidence of

completion.

In either case, instructors must do additional work to view summary statistics—such as

how students performed on each question or how individual students fared across tutorials.

A planned improvement is to offer a dashboard tool to simplify the process of accessing such

summaries.

However, I strongly recommend that instructors grade students based on completion,

not performance. Grading by performance can discourage students from making mistakes

and may even incentivize cheating (e.g., by using the Stacker to find correct answers). The
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Tutor is explicitly designed to help students confront and correct misconceptions—mistakes

are expected. In fact, if students make no mistakes, the Tutor is likely being used with the

wrong population.

10.7 Textual vs. Graphical Explanation

The Tutor primarily explains program behavior using text (i.e., refutation texts), while

the Stacker provides graphical explanations. Although the Tutor includes links to the

Stacker, few students click them (in the US1 population, 12 students clicked zero times,

25 clicked 1–5 times, and 9 clicked more than 5 times). It remains future work to determine

which format is more effective, and whether combining them creates a synergistic effect.

Depending on the outcome, I may revise how the Tutor presents explanations to further

enhance learning.

10.8 What Courses Does the SMoL Tutor Fit?

The Tutor’s knowledge prerequisites (Section 4.6.4) align with concepts typically covered

in CS1 or CS2. While some CS1 and CS2 students may not have encountered anonymous

functions, they can still complete all earlier tutorials.

The Tutor does support a limited set of languages (Section 4.1.1). This is not a problem

when a course’s primarily language is supported. In addition, the limited set of supported

languages is also generally not a problem in Programming Languages courses, where a central

goal is to reason about semantics independently of syntax.

However, instructors should note that the SMoL Tutor is not a JavaScript Tutor, a

Python Tutor, or a Scala Tutor. The correct answers in the Tutor occasionally do not match

a specific language (see Section 4.6.6). More importantly, these languages likely include

many features that are outside the scope of SMoL and behave surprisingly [31, 54, 55, 87].

Therefore, when the goal is teaching one of the language, I recommend that instructors
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supplement the SMoL Tutor with teaching materials like WatChat by Chandra et al. [9] to

address language-specific misconceptions.

Overall, although my studies have primarily focused on programming language courses,

I believe the Tutor is also valuable for less advanced courses—even in CS1 or CS2 if the

relevant language features have been covered.

10.9 Notable Limitations of SMoL Tutor’s Content

The Tutor does not address several important aspects of programming language behavior

that are relevant in real-world programming:

• Syntactic misconceptions. For example, misconceptions such as confusing x = e with

x == e are explicitly excluded from the scope of the SMoL Tutor.

• Implementation-specific behavior and undefined behavior.

• Language-specific behavior, as discussed in Section 10.8.
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CHAPTER 11

CONCLUSION

To repeat, here is my thesis statement:

Misconceptions about SMoL behavior are widespread, but a tutoring system with

carefully designed questions and feedback can effectively correct them.

I claim to have fulfilled this thesis by building a tutoring system—the SMoL Tutor

(Chapter 4)—that embodies the goals of the thesis.

The Tutor is designed to correct the misconceptions identified in Chapter 5, presents

programs in multiple languages (Chapters 3 and 8), relies on the Stacker (Chapter 6) and

refutation text to deliver feedback, has been deployed across multiple populations (Chap-

ter 9), and is effective at correcting most misconceptions without causing clear negative

effects on the rest (Section 4.4).
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APPENDIX A

INTERPRETERS

This appendix presents source code related to the interpreters. There is one definitional

interpreter for the SMoL Language (Chapter 3), and one misinterpreter for each misconcep-

tion from Chapter 5. Appendix A.1 defines the syntax of the Language. All interpreters

depend on this module. Appendix A.2 presents the source code of the definitional interpreter

for the Language. The remaining sections present the source code differences between the

definitional interpreter and each misinterpreter:

CallByRef Appendix A.3

CallCopyStructs Appendix A.4

DefByRef Appendix A.5

DefCopyStructs Appendix A.6

StructByRef Appendix A.7

StructCopyStructs Appendix A.8

DeepClosure Appendix A.9
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DefOrSet Appendix A.10

FlatEnv Appendix A.11

FunNotVal Appendix A.12

Lazy Appendix A.13

NoCircularity Appendix A.14

All the source code are written in the plait language [53].

A copy of the source code is also available at the dissertation’s webpage:

github.com/LuKuangChen/dissertation

A.1 Syntax of The SMoL Language

#lang plait

(define-type Constant

(logical [l : Boolean])

(numeric [n : Number]))

(define-type Statement

(expressive [e : Expression])

(definitive [d : Definition]))

(define-type Expression

(Con [c : Constant])

(Var [x : Symbol])

(Set! [x : Symbol] [e : Expression])

;; `and` and `or` are translated to `if`

149

https://github.com/LuKuangChen/dissertation


(If [e_cnd : Expression] [e_thn : Expression] [e_els :

Expression])

(Cond [ebs : (Listof (Expression * Body))] [ob : (Optionof Body

)])

(Begin [es : (Listof Expression)] [e : Expression])

(Lambda [xs : (Listof Symbol)] [body : Body])

(Let [xes : (Listof (Symbol * Expression))] [body : Body])

;; `let* ` and `letrec ` are translated to`let`

;; primitive operations are supported by defining the operators

as variables

(App [e : Expression] [es : (Listof Expression)]))

(define (And es)

(cond

[(empty? es) (Con (logical #t))]

[else (If (first es)

(And (rest es))

(Con (logical #f)))]))

(define (Or es)

(cond

[(empty? es) (Con (logical #f))]

[else (If (first es)

(Con (logical #t))

(Or (rest es)))]))

(define (Let* xes b)
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(cond

[(empty? xes) (Let (list) b)]

[else (Let (list (first xes))

(pair (list) (Let* (rest xes) b)))]))

(define (Letrec xes b)

(Let (list)

(pair (append (map xe->definitive xes) (fst b))

(snd b))))

(define (xe->definitive xe)

(definitive (Defvar (fst xe) (snd xe))))

(define-type Definition

(Defvar [x : Symbol] [e : Expression])

(Deffun [f : Symbol] [xs : (Listof Symbol)] [b : Body]))

(define-type-alias Body ((Listof Statement) * Expression))

(define-type-alias Program (Listof Statement))

(define-type PrimitiveOperator

;; + - * /

(Add)

(Sub)

(Mul)

(Div)

;; < <= > >=

(Lt)

(Le)
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(Gt)

(Ge)

(VecNew) ;; mvec

(VecLen)

(VecRef)

(VecSet)

(PairNew) ;; mpair

(PairLft)

(PairRht)

(PairSetLft)

(PairSetRht)

(Eq) ;; =

)

(define (make-the-primordial-env load)

(list

(hash

(list

(pair '+ (load (Add)))

(pair '- (load (Sub)))

(pair '* (load (Mul)))

(pair '/ (load (Div)))

(pair '< (load (Lt)))

(pair '> (load (Gt)))

(pair '<= (load (Le)))
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(pair '>= (load (Ge)))

(pair 'mvec (load (VecNew)))

(pair 'vec-len (load (VecLen)))

(pair 'vec-ref (load (VecRef)))

(pair 'vec-set! (load (VecSet)))

(pair 'mpair (load (PairNew)))

(pair 'left (load (PairLft)))

(pair 'right (load (PairRht)))

(pair 'set-left! (load (PairSetLft)))

(pair 'set-right! (load (PairSetRht)))

(pair '= (load (Eq)))

))))

A.2 The Definitional Interpreter

#lang plait

(require smol-interpreters/syntax)

(require

(typed-in racket

[append-map : (('a -> (Listof 'b)) (Listof 'a) -> (Listof 'b)

)]

[hash-values : ((Hashof 'a 'b) -> (Listof 'b))]

[count : (('a -> Boolean) (Listof 'a) -> Number)]

[for-each : (('a -> 'b) (Listof 'a) -> Void)]

[string-join : ((Listof String) String -> String)]

[displayln : ('a -> Void)]
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[list- >vector : ((Listof 'a) -> (Vectorof 'a))]

[vector- >list : ((Vectorof 'a) -> (Listof 'a))]

[number- >string : (Number -> String)]

[check-duplicates : ((Listof 'a) -> Boolean)]))

(define-syntax for

(syntax-rules ()

[(for ([x xs]) body ...)

(for-each (lambda (x) (begin body ...)) xs)]))

(define-type Tag

(TNum)

(TStr)

(TLgc)

(TFun)

(TVec))

(define-type Value

(unit)

(embedded [c : Constant])

(primitive [o : PrimitiveOperator])

(function [xs : (Listof Symbol)] [body : Body] [env :

Environment])

(vector [vs : (Vectorof Value)]))

(define (value-eq? v1 v2)

(cond

154



[(and (unit? v1) (unit? v2)) #t]

[(and (embedded? v1) (embedded? v2)) (equal? v1 v2)]

[(and (primitive? v1) (primitive? v2)) (equal? v1 v2)]

[else (eq? v1 v2)]))

(define (as-logical v)

(type-case Value v

[(embedded c)

(type-case Constant c

[(logical b) b]

[else (error 'smol "expecting␣a␣boolean")])]

[else

(error 'smol "expecting␣a␣boolean")]))

(define (from-logical [v : Boolean])

(embedded (logical v)))

(define (as-numeric v)

(type-case Value v

[(embedded c)

(type-case Constant c

[(numeric n) n]

[else (error 'smol "expecting␣a␣number")])]

[else

(error 'smol "expecting␣a␣number")]))

(define (from-numeric [n : Number])

(embedded (numeric n)))
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(define (as-vector v)

(type-case Value v

[(vector v)

v]

[else

(error 'smol "expecting␣a␣vector")]))

(define (as-pair v)

(let ([v (as-vector v)])

(if (= (vector-length v) 2)

v

(error 'smol "expecting␣a␣pair"))))

(define (as-one vs)

(cond

[(= (length vs) 1)

(first vs)]

[else

(error 'smol "arity-mismatch ,␣expecting␣one")]))

(define (as-two vs)

(cond

[(= (length vs) 2)

(values (first vs) (first (rest vs)))]

[else

(error 'smol "arity-mismatch ,␣expecting␣two")]))

(define (as-three vs)

(cond

[(= (length vs) 3)
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(values (first vs) (first (rest vs)) (first (rest (rest vs))

))]

[else

(error 'smol "arity-mismatch ,␣expecting␣three")]))

(define-type-alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof Value))))

(define-type-alias Environment (Listof EnvironmentFrame))

(define (load f)

(box (some (primitive f))))

(define the-primordial-env

(make-the-primordial-env load))

(define (cmp f vs) (from-logical (cmp-helper f vs)))

(define (cmp-helper f vs) : Boolean

(cond

[(empty? vs) #t]

[else

(local ((define (rec v vs)

(cond

[(empty? vs) #t]

[else

(and (f v (first vs))

(rec (first vs) (rest vs)))])))

(rec (first vs) (rest vs)))]))
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(define (delta p vs)

(type-case PrimitiveOperator p

[(Add) (from-numeric (foldl (lambda (m n) (+ m n)) 0 (map

as-numeric vs)))]

[(Sub)

(let ([vs (map as-numeric vs)])

(from-numeric

(foldl (lambda (m n) (- n m))

(first vs)

(rest vs))))]

[(Mul) (from-numeric (foldl (lambda (m n) (* m n)) 1 (map

as-numeric vs)))]

[(Div)

(let ([vs (map as-numeric vs)])

(from-numeric

(foldl (lambda (m n) (/ n m))

(first vs)

(rest vs))))]

[(Eq) (cmp value-eq? vs)]

[(Lt) (cmp (lambda (a b) (< (as-numeric a) (as-numeric b)))

vs)]

[(Gt) (cmp (lambda (a b) (> (as-numeric a) (as-numeric b)))

vs)]

[(Le) (cmp (lambda (a b) (<= (as-numeric a) (as-numeric b)))

vs)]

[(Ge) (cmp (lambda (a b) (>= (as-numeric a) (as-numeric b)))

vs)]
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[(VecNew) (vector (list- >vector vs))]

[(VecLen)

(local ((define v (as-one vs)))

(from-numeric (vector-length (as-vector v))))]

[(VecRef)

(local ((define-values (v1 v2) (as-two vs))

(define vvec (as-vector v1))

(define vnum (as-numeric v2)))

(vector-ref vvec vnum))]

[(VecSet)

(local ((define-values (v1 v2 v3) (as-three vs))

(define vvec (as-vector v1))

(define vnum (as-numeric v2)))

(begin

(vector-set! vvec vnum v3)

(unit)))]

[(PairNew)

(local ((define-values (v1 v2) (as-two vs)))

(vector (list- >vector vs)))]

[(PairLft)

(local ((define v (as-one vs)))

(vector-ref (as-pair v) 0))]

[(PairRht)

(local ((define v (as-one vs)))

(vector-ref (as-pair v) 1))]

[(PairSetLft)

(local ((define-values (vpr vel) (as-two vs)))
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(begin

(vector-set! (as-pair vpr) 0 vel)

(unit)))]

[(PairSetRht)

(local ((define-values (vpr vel) (as-two vs)))

(begin

(vector-set! (as-pair vpr) 1 vel)

(unit)))]))

(define (make-env env xs)

(begin

(when (check-duplicates xs)

(error 'smol "can't␣define␣a␣variable␣twice␣in␣one␣block"))

(local [(define (allocate x)

(pair x (box (none))))]

(cons (hash (map allocate xs)) env))))

(define (env-frame-lookup f x)

(hash-ref f x))

(define (env-lookup-location env x)

(type-case Environment env

[empty

(error 'smol "variable␣undeclared")]

[(cons f fs)

(type-case (Optionof '_) (env-frame-lookup f x)

[(none) (env-lookup-location fs x)]

[(some loc) loc])]))

(define (env-lookup env x)
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(let ([v (env-lookup-location env x)])

(type-case (Optionof '_) (unbox v)

[(none) (error 'smol "refer␣to␣a␣variable␣before␣assign␣it␣

a␣value")]

[(some v) v])))

(define (env-update! env)

(lambda (x v)

(let ([loc (env-lookup-location env x)])

(set-box! loc (some v)))))

(define (declared-Symbols [ts : (Listof Statement)])

(local [(define (xs-of-t [t : Statement])

: (Listof Symbol)

(type-case Statement t

[(expressive e) (list)]

[(definitive d)

(type-case Definition d

[(Defvar x e) (list x)]

[(Deffun f xs b) (list f)])]))]

(append-map xs-of-t ts)))

(define (eval-def env d)

(type-case Definition d

[(Defvar x e)

(let ([v ((eval-exp env) e)])

((env-update! env) x v))]

[(Deffun f xs b)
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(let ([v (function xs b env)])

((env-update! env) f v))]))

(define (eval-body env xvs b)

(local [(define vs (map snd xvs))

(define xs

(append (map fst xvs)

(declared-Symbols (fst b))))]

(let ([env (make-env env xs)])

(begin

; bind arguments

(for ([xv xvs])

((env-update! env) (fst xv) (snd xv)))

; evaluate starting terms

(for ([t (fst b)])

((eval-statement env) t))

; evaluate and return the result

((eval-exp env) (snd b))))))

(define (eval-exp env)

(lambda (e)

(type-case Expression e

[(Con c) (embedded c)]

[(Var x) (env-lookup env x)]

[(Lambda xs b) (function xs b env)]

[(Let xes b)

(local [(define (ev-bind xv)
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(let ([v ((eval-exp env) (snd xv))])

(pair (fst xv) v)))]

(let ([xvs (map ev-bind xes)])

(eval-body env xvs b)))]

[(Begin es e)

(begin

(map (eval-exp env) es)

((eval-exp env) e))]

[(Set! x e)

(let ([v ((eval-exp env) e)])

(begin

((env-update! env) x v)

(unit)))]

[(If e_cnd e_thn e_els)

(let ([v ((eval-exp env) e_cnd)])

(let ([l (as-logical v)])

((eval-exp env)

(if l e_thn e_els))))]

[(Cond ebs ob)

(local [(define (loop ebs)

(type-case (Listof (Expression * Body)) ebs

[empty

(type-case (Optionof Body) ob

[(none) (error 'smol "fall␣throught␣cond")]

[(some b)

(eval-body env (list) b)])]

[(cons eb ebs)
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(let ([v ((eval-exp env) (fst eb))])

(let ([l (as-logical v)])

(if l

(eval-body env (list) (snd eb))

(loop ebs))))]))]

(loop ebs))]

[(App e es)

(let ([v ((eval-exp env) e)])

(let ([vs (map (eval-exp env) es)])

(type-case Value v

[(function xs b env)

(if (= (length xs) (length vs))

(eval-body env (map2 pair xs vs) b)

(error 'smol "(arity-mismatch␣(length␣xs)␣(

length␣vs))"))]

[(primitive p)

(delta p vs)]

[else

(error 'smol "(type-mismatch␣(TFun)␣v)")])))])))

(define (eval-statement env)

(lambda (t)

(type-case Statement t

[(definitive d)

(begin

(eval-def env d)

(unit))]
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[(expressive e)

((eval-exp env) e)])))

(define (constant- >string [c : Constant])

(type-case Constant c

[(logical l) (if l "#t" "f")]

[(numeric n) (number- >string n)]))

(define (self-ref [i : Number]) : String

(foldr string-append

""

(list "#" (number- >string i) "#")))

(define (self-def [i : Number]) : String

(foldr string-append

""

(list "#" (number- >string i) "=")))

(define (value- >string visited-vs)

(lambda (v)

(type-case Value v

[(unit) "#<void >"]

[(embedded c) (constant- >string c)]

[(primitive o) "#<procedure >"]

[(function xs body env) "#<procedure >"]

[(vector vs)

(type-case (Optionof (Boxof (Optionof Number))) (hash-ref

visited-vs vs)
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[(none)

(let ([visited-vs (hash-set visited-vs vs (box (none)))

])

(let* ([s (foldr string-append

""

(list

"#("

(string-join

(map (value- >string visited-vs) (

vector- >list vs))

"␣")

")"))]

[boi (some-v (hash-ref visited-vs vs))])

(type-case (Optionof Number) (unbox boi)

[(none) s]

[(some i) (string-append (self-def i) s)])))]

[(some boi)

(type-case (Optionof Number) (unbox boi)

[(none)

(let ([i (count some? (map unbox (hash-values

visited-vs)))])

(begin

(set-box! (some-v (hash-ref visited-vs vs)) (

some i))

(self-ref i)))]

[(some i)

(self-ref i)])
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])])))

(define (print-value v)

(type-case Value v

[(unit) (void)]

[else (displayln ((value- >string (hash (list))) v))]))

(define (exercute-terms-top-level env)

(lambda (ts) : Void

(type-case (Listof Statement) ts

[empty (void)]

[(cons t ts)

(type-case Statement t

[(definitive d)

(begin

(eval-def env d)

((exercute-terms-top-level env) ts))]

[(expressive e)

(begin

(print-value ((eval-exp env) e))

((exercute-terms-top-level env) ts))])])))

(define (evaluate [p : Program])

(local [(define xs (declared-Symbols p))

(define the-top-level-env (make-env the-primordial-env

xs))]

((exercute-terms-top-level the-top-level-env) p)))
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A.3 The CallByRef Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/CallByRef.rkt

2025-02-11 10:38:14

@@ -93,11 +93,11 @@

[else

(error 'smol "arity -mismatch , expecting three")]))

-(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof Value))))

+(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof (Boxof Value)))))

(define -type -alias Environment (Listof EnvironmentFrame))

(define (load f)

- (box (some (primitive f))))

+ (box (some (box (primitive f)))))

(define the-primordial -env

(make -the-primordial -env load))

@@ -213,10 +213,10 @@

(type -case Definition d

[(Defvar x e)

(let ([v ((eval -exp env) e)])

- ((env-update! env) x v))]
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+ ((env-update! env) x (box v)))]

[(Deffun f xs b)

(let ([v (function xs b env)])

- ((env-update! env) f v))]))

+ ((env-update! env) f (box v)))]))

(define (eval -body env xvs b)

(local [(define vs (map snd xvs))

@@ -233,16 +233,22 @@

((eval -statement env) t))

; evaluate and return the result

((eval -exp env) (snd b))))))

+

+(define (eval -ref env)

+ (lambda (e)

+ (type -case Expression e

+ [(Var x) (env-lookup env x)]

+ [else (box ((eval -exp env) e))])))

(define (eval -exp env)

(lambda (e)

(type -case Expression e

[(Con c) (embedded c)]

- [(Var x) (env-lookup env x)]

+ [(Var x) (unbox (env-lookup env x))]

[(Lambda xs b) (function xs b env)]

[(Let xes b)
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(local [(define (ev-bind xv)

- (let ([v ((eval -exp env) (snd xv))])

+ (let ([v ((eval -ref env) (snd xv))])

(pair (fst xv) v)))]

(let ([xvs (map ev-bind xes)])

(eval -body env xvs b)))]

@@ -253,7 +259,7 @@

[(Set! x e)

(let ([v ((eval -exp env) e)])

(begin

- ((env-update! env) x v)

+ (set-box! (env-lookup env x) v)

(unit)))]

[(If e_cnd e_thn e_els)

(let ([v ((eval -exp env) e_cnd)])

@@ -277,14 +283,14 @@

(loop ebs))]

[(App e es)

(let ([v ((eval -exp env) e)])

- (let ([vs (map (eval -exp env) es)])

+ (let ([vs (map (eval -ref env) es)])

(type -case Value v

[(function xs b env)

(if (= (length xs) (length vs))

(eval -body env (map2 pair xs vs) b)

(error 'smol "(arity -mismatch (length xs) (

length vs))"))]
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[(primitive p)

- (delta p vs)]

+ (delta p (map unbox vs))]

[else

(error 'smol "(type -mismatch (TFun) v)")])))])))

A.4 The CallCopyStructs Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/CallCopyStructs.rkt

2025-02-11 11:44:20

@@ -33,6 +33,11 @@

(function [xs : (Listof Symbol)] [body : Body] [env :

Environment])

(vector [vs : (Vectorof Value)]))

+(define (copy -value v)

+ (type -case Value v

+ [(vector v) (vector (list ->vector (vector ->list v)))]

+ [else v]))

+

(define (value -eq? v1 v2)

(cond

[(and (unit? v1) (unit? v2)) #t]

@@ -281,7 +286,7 @@

(type -case Value v
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[(function xs b env)

(if (= (length xs) (length vs))

- (eval -body env (map2 pair xs vs) b)

+ (eval -body env (map2 pair xs (map copy -value

vs)) b)

(error 'smol "(arity -mismatch (length xs) (

length vs))"))]

[(primitive p)

(delta p vs)]

A.5 The DefByRef Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/DefByRef.rkt

2025-02-11 11:52:39

@@ -93,11 +93,11 @@

[else

(error 'smol "arity -mismatch , expecting three")]))

-(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof Value))))

+(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof (Boxof Value)))))

(define -type -alias Environment (Listof EnvironmentFrame))

(define (load f)
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- (box (some (primitive f))))

+ (box (some (box (primitive f)))))

(define the-primordial -env

(make -the-primordial -env load))

@@ -212,10 +212,10 @@

(define (eval -def env d)

(type -case Definition d

[(Defvar x e)

- (let ([v ((eval -exp env) e)])

+ (let ([v ((eval -ref env) e)])

((env-update! env) x v))]

[(Deffun f xs b)

- (let ([v (function xs b env)])

+ (let ([v (box (function xs b env))])

((env-update! env) f v))]))

(define (eval -body env xvs b)

@@ -227,18 +227,24 @@

(begin

; bind arguments

(for ([xv xvs])

- ((env-update! env) (fst xv) (snd xv)))

+ ((env-update! env) (fst xv) (box (snd xv))))

; evaluate starting terms

(for ([t (fst b)])

((eval -statement env) t))
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; evaluate and return the result

((eval -exp env) (snd b))))))

+(define (eval -ref env)

+ (lambda (e)

+ (type -case Expression e

+ [(Var x) (env-lookup env x)]

+ [else (box ((eval -exp env) e))])))

+

(define (eval -exp env)

(lambda (e)

(type -case Expression e

[(Con c) (embedded c)]

- [(Var x) (env-lookup env x)]

+ [(Var x) (unbox (env-lookup env x))]

[(Lambda xs b) (function xs b env)]

[(Let xes b)

(local [(define (ev-bind xv)

@@ -253,7 +259,7 @@

[(Set! x e)

(let ([v ((eval -exp env) e)])

(begin

- ((env-update! env) x v)

+ (set-box! (env-lookup env x) v)

(unit)))]

[(If e_cnd e_thn e_els)

(let ([v ((eval -exp env) e_cnd)])
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A.6 The DefCopyStructs Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/DefCopyStructs.rkt

2025-02-11 11:49:52

@@ -33,6 +33,11 @@

(function [xs : (Listof Symbol)] [body : Body] [env :

Environment])

(vector [vs : (Vectorof Value)]))

+(define (copy -value v)

+ (type -case Value v

+ [(vector v) (vector (list ->vector (vector ->list v)))]

+ [else v]))

+

(define (value -eq? v1 v2)

(cond

[(and (unit? v1) (unit? v2)) #t]

@@ -213,7 +218,7 @@

(type -case Definition d

[(Defvar x e)

(let ([v ((eval -exp env) e)])

- ((env-update! env) x v))]

+ ((env-update! env) x (copy -value v)))]

[(Deffun f xs b)

(let ([v (function xs b env)])
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((env-update! env) f v))]))

@@ -243,7 +248,7 @@

[(Let xes b)

(local [(define (ev-bind xv)

(let ([v ((eval -exp env) (snd xv))])

- (pair (fst xv) v)))]

+ (pair (fst xv) (copy -value v))))]

(let ([xvs (map ev-bind xes)])

(eval -body env xvs b)))]

[(Begin es e)

A.7 The StructByRef Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/StructByRef.rkt

2025-02-11 11:59:22

@@ -31,9 +31,11 @@

(embedded [c : Constant])

(primitive [o : PrimitiveOperator])

(function [xs : (Listof Symbol)] [body : Body] [env :

Environment])

- (vector [vs : (Vectorof Value)]))

+ (vector [vs : (Vectorof (Boxof Value))]))

(define (value -eq? v1 v2)

+ (value -eq-helper? (unbox v1) (unbox v2)))
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+(define (value -eq-helper? v1 v2)

(cond

[(and (unit? v1) (unit? v2)) #t]

[(and (embedded? v1) (embedded? v2)) (equal? v1 v2)]

@@ -52,7 +54,7 @@

(embedded (logical v)))

(define (as-numeric v)

- (type -case Value v

+ (type -case Value (unbox v)

[(embedded c)

(type -case Constant c

[(numeric n) n]

@@ -63,7 +65,7 @@

(embedded (numeric n)))

(define (as-vector v)

- (type -case Value v

+ (type -case Value (unbox v)

[(vector v)

v]

[else

@@ -93,11 +95,11 @@

[else

(error 'smol "arity -mismatch , expecting three")]))

-(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (
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Optionof Value))))

+(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof (Boxof Value)))))

(define -type -alias Environment (Listof EnvironmentFrame))

(define (load f)

- (box (some (primitive f))))

+ (box (some (box (primitive f)))))

(define the-primordial -env

(make -the-primordial -env load))

@@ -143,7 +145,7 @@

(local ((define -values (v1 v2) (as-two vs))

(define vvec (as-vector v1))

(define vnum (as-numeric v2)))

- (vector -ref vvec vnum))]

+ (unbox (vector -ref vvec vnum)))]

[(VecSet)

(local ((define -values (v1 v2 v3) (as-three vs))

(define vvec (as-vector v1))

@@ -156,10 +158,10 @@

(vector (list ->vector vs)))]

[(PairLft)

(local ((define v (as-one vs)))

- (vector -ref (as-pair v) 0))]

+ (unbox (vector -ref (as-pair v) 0)))]

[(PairRht)
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(local ((define v (as-one vs)))

- (vector -ref (as-pair v) 1))]

+ (unbox (vector -ref (as-pair v) 1)))]

[(PairSetLft)

(local ((define -values (vpr vel) (as-two vs)))

(begin

@@ -212,11 +214,10 @@

(define (eval -def env d)

(type -case Definition d

[(Defvar x e)

- (let ([v ((eval -exp env) e)])

+ (let ([v (box ((eval -exp env) e))])

((env-update! env) x v))]

[(Deffun f xs b)

- (let ([v (function xs b env)])

- ((env-update! env) f v))]))

+ ((env-update! env) f (box (function xs b env)))]))

(define (eval -body env xvs b)

(local [(define vs (map snd xvs))

@@ -227,18 +228,24 @@

(begin

; bind arguments

(for ([xv xvs])

- ((env-update! env) (fst xv) (snd xv)))

+ ((env-update! env) (fst xv) (box (snd xv))))

; evaluate starting terms
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(for ([t (fst b)])

((eval -statement env) t))

; evaluate and return the result

((eval -exp env) (snd b))))))

+(define (eval -ref env)

+ (lambda (e)

+ (type -case Expression e

+ [(Var x) (env-lookup env x)]

+ [else (box ((eval -exp env) e))])))

+

(define (eval -exp env)

(lambda (e)

(type -case Expression e

[(Con c) (embedded c)]

- [(Var x) (env-lookup env x)]

+ [(Var x) (unbox (env-lookup env x))]

[(Lambda xs b) (function xs b env)]

[(Let xes b)

(local [(define (ev-bind xv)

@@ -253,7 +260,7 @@

[(Set! x e)

(let ([v ((eval -exp env) e)])

(begin

- ((env-update! env) x v)

+ (set-box! (env-lookup env x) v)

(unit)))]
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[(If e_cnd e_thn e_els)

(let ([v ((eval -exp env) e_cnd)])

@@ -277,11 +284,11 @@

(loop ebs))]

[(App e es)

(let ([v ((eval -exp env) e)])

- (let ([vs (map (eval -exp env) es)])

+ (let ([vs (map (eval -ref env) es)])

(type -case Value v

[(function xs b env)

(if (= (length xs) (length vs))

- (eval -body env (map2 pair xs vs) b)

+ (eval -body env (map2 pair xs (map unbox vs)) b

)

(error 'smol "(arity -mismatch (length xs) (

length vs))"))]

[(primitive p)

(delta p vs)]

@@ -328,7 +335,7 @@

(list

"#("

(string -join

- (map (value ->string visited -vs) (

vector ->list vs))

+ (map (value ->string visited -vs) (

map unbox (vector ->list vs)))

" ")
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")"))]

[boi (some -v (hash -ref visited -vs vs))])

A.8 The StructCopyStructs Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/StructCopyStructs.

rkt 2025-02-08 11:00:46

@@ -3,6 +3,7 @@

(require smol -interpreters/syntax)

(require

(typed -in racket

+ [vector -map : (('a -> 'b) (Vectorof 'a) -> (Vectorof 'b))]

[append -map : (('a -> (Listof 'b)) (Listof 'a) -> (Listof 'b

))]

[hash -values : ((Hashof 'a 'b) -> (Listof 'b))]

[count : (('a -> Boolean) (Listof 'a) -> Number)]

@@ -33,6 +34,11 @@

(function [xs : (Listof Symbol)] [body : Body] [env :

Environment])

(vector [vs : (Vectorof Value)]))

+(define (copy -value v)

+ (type -case Value v

+ [(vector v) (vector (vector -map copy -value v))]

+ [else v]))
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+

(define (value -eq? v1 v2)

(cond

[(and (unit? v1) (unit? v2)) #t]

@@ -135,7 +141,7 @@

[(Gt) (cmp (lambda (a b) (> (as-numeric a) (as-numeric b)))

vs)]

[(Le) (cmp (lambda (a b) (<= (as-numeric a) (as-numeric b)))

vs)]

[(Ge) (cmp (lambda (a b) (>= (as-numeric a) (as-numeric b)))

vs)]

- [(VecNew) (vector (list ->vector vs))]

+ [(VecNew) (vector (list ->vector (map copy -value vs)))]

[(VecLen)

(local ((define v (as-one vs)))

(from -numeric (vector -length (as-vector v))))]

@@ -149,7 +155,7 @@

(define vvec (as-vector v1))

(define vnum (as-numeric v2)))

(begin

- (vector -set! vvec vnum v3)

+ (vector -set! vvec vnum (copy -value v3))

(unit)))]

[(PairNew)

(local ((define -values (v1 v2) (as-two vs)))

@@ -163,12 +169,12 @@

[(PairSetLft)
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(local ((define -values (vpr vel) (as-two vs)))

(begin

- (vector -set! (as-pair vpr) 0 vel)

+ (vector -set! (as-pair vpr) 0 (copy -value vel))

(unit)))]

[(PairSetRht)

(local ((define -values (vpr vel) (as-two vs)))

(begin

- (vector -set! (as-pair vpr) 1 vel)

+ (vector -set! (as-pair vpr) 1 (copy -value vel))

(unit)))]))

(define (make -env env xs)

A.9 The DeepClosure Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/DeepClosure.rkt

2025-02-11 10:34:48

@@ -3,6 +3,7 @@

(require smol -interpreters/syntax)

(require

(typed -in racket

+ [hash ->list : ((Hashof 'a 'b) -> (Listof ('a * 'b)))]

[append -map : (('a -> (Listof 'b)) (Listof 'a) -> (Listof 'b

))]
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[hash -values : ((Hashof 'a 'b) -> (Listof 'b))]

[count : (('a -> Boolean) (Listof 'a) -> Number)]

@@ -208,14 +209,31 @@

[(Defvar x e) (list x)]

[(Deffun f xs b) (list f)])]))]

(append -map xs-of-t ts)))

+

+;; Copy the location only if it has been initialized

+(define (maybe -copy -box bo)

+ (if (none? (unbox bo))

+ bo

+ (box (unbox bo))))

+(define (copy -xbov f)

+ (lambda (x)

+ (pair x

+ (maybe -copy -box (some -v (hash -ref f x))))))

+(define (copy -env-frame frm)

+ (hash (map (copy -xbov frm) (hash -keys frm))))

+(define (copy -env env)

+ (map copy -env-frame env))

+(define (build -function xs b env)

+ (function xs b (copy -env env)))

+

(define (eval -def env d)

(type -case Definition d

[(Defvar x e)
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(let ([v ((eval -exp env) e)])

((env-update! env) x v))]

[(Deffun f xs b)

- (let ([v (function xs b env)])

+ (let ([v (build -function xs b env)])

((env-update! env) f v))]))

(define (eval -body env xvs b)

@@ -239,7 +257,7 @@

(type -case Expression e

[(Con c) (embedded c)]

[(Var x) (env-lookup env x)]

- [(Lambda xs b) (function xs b env)]

+ [(Lambda xs b) (build -function xs b env)]

[(Let xes b)

(local [(define (ev-bind xv)

(let ([v ((eval -exp env) (snd xv))])

@@ -281,7 +299,7 @@

(type -case Value v

[(function xs b env)

(if (= (length xs) (length vs))

- (eval -body env (map2 pair xs vs) b)

+ (eval -body (copy -env env) (map2 pair xs vs) b)

(error 'smol "(arity -mismatch (length xs) (

length vs))"))]

[(primitive p)

(delta p vs)]
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A.10 The DefOrSet Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/DefOrSet.rkt

2025-02-11 11:56:29

@@ -3,6 +3,7 @@

(require smol -interpreters/syntax)

(require

(typed -in racket

+ [hash -has-key? : ((Hashof 'a 'b) 'a -> Boolean)]

[append -map : (('a -> (Listof 'b)) (Listof 'a) -> (Listof 'b

))]

[hash -values : ((Hashof 'a 'b) -> (Listof 'b))]

[count : (('a -> Boolean) (Listof 'a) -> Number)]

@@ -93,13 +94,13 @@

[else

(error 'smol "arity -mismatch , expecting three")]))

-(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof Value))))

+(define -type -alias EnvironmentFrame (Boxof (Hashof Symbol (

Optionof Value))))

(define -type -alias Environment (Listof EnvironmentFrame))

(define (load f)

- (box (some (primitive f))))
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+ (some (primitive f)))

(define the-primordial -env

- (make -the-primordial -env load))

+ (map box (make -the-primordial -env load)))

(define (cmp f vs) (from -logical (cmp-helper f vs)))

(define (cmp-helper f vs) : Boolean

@@ -171,68 +172,44 @@

(vector -set! (as-pair vpr) 1 vel)

(unit)))]))

-(define (make -env env xs)

- (begin

- (when (check -duplicates xs)

- (error 'smol "can't define a variable twice in one block")

)

- (local [(define (allocate x)

- (pair x (box (none))))]

- (cons (hash (map allocate xs)) env))))

-(define (env-frame -lookup f x)

- (hash -ref f x))

-(define (env-lookup -location env x)

- (type -case Environment env

- [empty

- (error 'smol "variable undeclared")]

- [(cons f fs)

- (type -case (Optionof '_) (env-frame -lookup f x)
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- [(none) (env-lookup -location fs x)]

- [(some loc) loc])]))

+(define (make -env env)

+ (cons (box (hash (list))) env))

(define (env-lookup env x)

- (let ([v (env-lookup -location env x)])

- (type -case (Optionof '_) (unbox v)

- [(none) (error 'smol "refer to a variable before assign it

a value")]

- [(some v) v])))

+ (let ([v (hash -ref (unbox (first env)) x)])

+ (type -case (Optionof (Optionof Value)) v

+ [(none) (env-lookup (rest env) x)]

+ [(some ov)

+ (type -case (Optionof Value) ov

+ [(none) (error 'smol "refer to a variable before assign

it a value")]

+ [(some v) v])])))

(define (env-update! env)

- (lambda (x v)

- (let ([loc (env-lookup -location env x)])

- (set-box! loc (some v)))))

-

-(define (declared -Symbols [ts : (Listof Statement)])

- (local [(define (xs-of-t [t : Statement])

- : (Listof Symbol)

- (type -case Statement t
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- [(expressive e) (list)]

- [(definitive d)

- (type -case Definition d

- [(Defvar x e) (list x)]

- [(Deffun f xs b) (list f)])]))]

- (append -map xs-of-t ts)))

+ (lambda (x mk-v)

+ (let ([f (first env)])

+ (begin

+ (unless (hash -has-key? (unbox f) x)

+ (set-box! f (hash -set (unbox f) x (none))))

+ (set-box! f (hash -set (unbox f) x (some (mk-v))))))))

(define (eval -def env d)

(type -case Definition d

[(Defvar x e)

- (let ([v ((eval -exp env) e)])

+ (let ([v (lambda () ((eval -exp env) e))])

((env-update! env) x v))]

[(Deffun f xs b)

- (let ([v (function xs b env)])

+ (let ([v (lambda () (function xs b env))])

((env-update! env) f v))]))

(define (eval -body env xvs b)

- (local [(define vs (map snd xvs))

- (define xs
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- (append (map fst xvs)

- (declared -Symbols (fst b))))]

- (let ([env (make -env env xs)])

- (begin

- ; bind arguments

- (for ([xv xvs])

- ((env-update! env) (fst xv) (snd xv)))

- ; evaluate starting terms

- (for ([t (fst b)])

- ((eval -statement env) t))

- ; evaluate and return the result

- ((eval -exp env) (snd b))))))

+ (let ([env (make -env env)])

+ (begin

+ ; bind arguments

+ (for ([xv xvs])

+ ((env-update! env) (fst xv) (lambda () (snd xv))))

+ ; evaluate starting terms

+ (for ([t (fst b)])

+ ((eval -statement env) t))

+ ; evaluate and return the result

+ ((eval -exp env) (snd b)))))

(define (eval -exp env)

(lambda (e)

@@ -251,10 +228,9 @@

(map (eval -exp env) es)
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((eval -exp env) e))]

[(Set! x e)

- (let ([v ((eval -exp env) e)])

- (begin

- ((env-update! env) x v)

- (unit)))]

+ (begin

+ ((env-update! env) x (lambda () ((eval -exp env) e)))

+ (unit))]

[(If e_cnd e_thn e_els)

(let ([v ((eval -exp env) e_cnd)])

(let ([l (as-logical v)])

@@ -366,6 +342,5 @@

((exercute -terms -top-level env) ts))])])))

(define (evaluate [p : Program])

- (local [(define xs (declared -Symbols p))

- (define the-top-level -env (make -env the-primordial -env

xs))]

+ (local [(define the-top-level -env (make -env the-primordial -env

))]

((exercute -terms -top-level the-top-level -env) p)))

A.11 The FlatEnv Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46
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+++ systems/smol -interpreters/misinterpreters/FlatEnv.rkt

2025-02-08 11:00:46

@@ -3,6 +3,7 @@

(require smol -interpreters/syntax)

(require

(typed -in racket

+ [hash -has-key? : ((Hashof 'a 'b) 'a -> Boolean)]

[append -map : (('a -> (Listof 'b)) (Listof 'a) -> (Listof 'b

))]

[hash -values : ((Hashof 'a 'b) -> (Listof 'b))]

[count : (('a -> Boolean) (Listof 'a) -> Number)]

@@ -94,12 +95,13 @@

(error 'smol "arity -mismatch , expecting three")]))

(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof Value))))

-(define -type -alias Environment (Listof EnvironmentFrame))

+(define -type -alias Environment (Boxof EnvironmentFrame))

+

(define (load f)

(box (some (primitive f))))

-(define the-primordial -env

- (make -the-primordial -env load))

+(define (the-primordial -env)

+ (box (first (make -the-primordial -env load))))
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(define (cmp f vs) (from -logical (cmp-helper f vs)))

(define (cmp-helper f vs) : Boolean

@@ -171,23 +173,25 @@

(vector -set! (as-pair vpr) 1 vel)

(unit)))]))

+

(define (make -env env xs)

(begin

(when (check -duplicates xs)

(error 'smol "can't define a variable twice in one block")

)

- (local [(define (allocate x)

- (pair x (box (none))))]

- (cons (hash (map allocate xs)) env))))

+ (set-box! env

+ (foldl (lambda (x env)

+ (if (hash -has-key? env x)

+ env

+ (hash -set env x (box (none)))))

+ (unbox env)

+ xs))

+ env))

(define (env-frame -lookup f x)

(hash -ref f x))

(define (env-lookup -location env x)

- (type -case Environment env

194



- [empty

- (error 'smol "variable undeclared")]

- [(cons f fs)

- (type -case (Optionof '_) (env-frame -lookup f x)

- [(none) (env-lookup -location fs x)]

- [(some loc) loc])]))

+ (type -case (Optionof '_) (env-frame -lookup (unbox env) x)

+ [(none) (error 'smol "variable undeclared")]

+ [(some loc) loc]))

(define (env-lookup env x)

(let ([v (env-lookup -location env x)])

(type -case (Optionof '_) (unbox v)

@@ -367,5 +371,5 @@

(define (evaluate [p : Program])

(local [(define xs (declared -Symbols p))

- (define the-top-level -env (make -env the-primordial -env

xs))]

+ (define the-top-level -env (make -env (the-primordial -

env) xs))]

((exercute -terms -top-level the-top-level -env) p)))

A.12 The FunNotVal Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/FunNotVal.rkt

195



2025-02-08 11:00:46

@@ -32,6 +32,11 @@

(primitive [o : PrimitiveOperator])

(function [xs : (Listof Symbol)] [body : Body] [env :

Environment])

(vector [vs : (Vectorof Value)]))

+(define (assert -not-fun [v : Value])

+ (type -case Value v

+ [(primitive o) (error 'smol "can't pass functions around")]

+ [(function _xs _body _env) (error 'smol "can't pass

functions around")]

+ [else v]))

(define (value -eq? v1 v2)

(cond

@@ -234,8 +239,14 @@

; evaluate and return the result

((eval -exp env) (snd b))))))

+(define (eval -fun env)

+ (lambda (e)

+ ((eval -exp-helper env) e)))

(define (eval -exp env)

(lambda (e)

+ (assert -not-fun ((eval -exp-helper env) e))))

+(define (eval -exp-helper env)

+ (lambda (e)
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(type -case Expression e

[(Con c) (embedded c)]

[(Var x) (env-lookup env x)]

@@ -276,7 +287,7 @@

(loop ebs))))]))]

(loop ebs))]

[(App e es)

- (let ([v ((eval -exp env) e)])

+ (let ([v ((eval -fun env) e)])

(let ([vs (map (eval -exp env) es)])

(type -case Value v

[(function xs b env)

A.13 The Lazy Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/Lazy.rkt

2025-02-26 14:56:33

@@ -26,14 +26,29 @@

(TFun)

(TVec))

+(define -syntax -rule (delay e)

+ (let ([cache (box (none))])

+ (lambda () : Value

+ (type -case (Optionof Value) (unbox cache)
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+ [(some v) v]

+ [(none)

+ (let ([v e])

+ (begin

+ (set-box! cache (some v))

+ v))]))))

+(define (force v) : Value

+ (v))

+

(define -type Value

(unit)

(embedded [c : Constant])

(primitive [o : PrimitiveOperator])

(function [xs : (Listof Symbol)] [body : Body] [env :

Environment])

- (vector [vs : (Vectorof Value)]))

+ (vector [vs : (Vectorof (-> Value))]))

(define (value -eq? v1 v2)

+ (value -eq-helper? (force v1) (force v2)))

+(define (value -eq-helper? v1 v2)

(cond

[(and (unit? v1) (unit? v2)) #t]

[(and (embedded? v1) (embedded? v2)) (equal? v1 v2)]

@@ -52,7 +67,7 @@

(embedded (logical v)))
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(define (as-numeric v)

- (type -case Value v

+ (type -case Value (force v)

[(embedded c)

(type -case Constant c

[(numeric n) n]

@@ -63,7 +78,7 @@

(embedded (numeric n)))

(define (as-vector v)

- (type -case Value v

+ (type -case Value (force v)

[(vector v)

v]

[else

@@ -93,11 +108,11 @@

[else

(error 'smol "arity -mismatch , expecting three")]))

-(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof Value))))

+(define -type -alias EnvironmentFrame (Hashof Symbol (Boxof (

Optionof (-> Value)))))

(define -type -alias Environment (Listof EnvironmentFrame))

(define (load f)

- (box (some (primitive f))))
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+ (box (some (delay (primitive f)))))

(define the-primordial -env

(make -the-primordial -env load))

@@ -143,7 +158,7 @@

(local ((define -values (v1 v2) (as-two vs))

(define vvec (as-vector v1))

(define vnum (as-numeric v2)))

- (vector -ref vvec vnum))]

+ (force (vector -ref vvec vnum)))]

[(VecSet)

(local ((define -values (v1 v2 v3) (as-three vs))

(define vvec (as-vector v1))

@@ -156,10 +171,10 @@

(vector (list ->vector vs)))]

[(PairLft)

(local ((define v (as-one vs)))

- (vector -ref (as-pair v) 0))]

+ (force (vector -ref (as-pair v) 0)))]

[(PairRht)

(local ((define v (as-one vs)))

- (vector -ref (as-pair v) 1))]

+ (force (vector -ref (as-pair v) 1)))]

[(PairSetLft)

(local ((define -values (vpr vel) (as-two vs)))

(begin

@@ -212,11 +227,11 @@
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(define (eval -def env d)

(type -case Definition d

[(Defvar x e)

- (let ([v ((eval -exp env) e)])

+ (let ([v (delay ((eval -exp env) e))])

((env-update! env) x v))]

[(Deffun f xs b)

(let ([v (function xs b env)])

- ((env-update! env) f v))]))

+ ((env-update! env) f (delay v)))]))

(define (eval -body env xvs b)

(local [(define vs (map snd xvs))

@@ -238,11 +253,11 @@

(lambda (e)

(type -case Expression e

[(Con c) (embedded c)]

- [(Var x) (env-lookup env x)]

+ [(Var x) (force (env-lookup env x))]

[(Lambda xs b) (function xs b env)]

[(Let xes b)

(local [(define (ev-bind xv)

- (let ([v ((eval -exp env) (snd xv))])

+ (let ([v (delay ((eval -exp env) (snd xv)))])

(pair (fst xv) v)))]

(let ([xvs (map ev-bind xes)])

(eval -body env xvs b)))]
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@@ -251,7 +266,7 @@

(map (eval -exp env) es)

((eval -exp env) e))]

[(Set! x e)

- (let ([v ((eval -exp env) e)])

+ (let ([v (delay ((eval -exp env) e))])

(begin

((env-update! env) x v)

(unit)))]

@@ -277,7 +292,7 @@

(loop ebs))]

[(App e es)

(let ([v ((eval -exp env) e)])

- (let ([vs (map (eval -exp env) es)])

+ (let ([vs (map (lambda (e) (delay ((eval -exp env) e)))

es)])

(type -case Value v

[(function xs b env)

(if (= (length xs) (length vs))

@@ -328,7 +343,7 @@

(list

"#("

(string -join

- (map (value ->string visited -vs) (

vector ->list vs))

+ (map (value ->string visited -vs) (

map force (vector ->list vs)))
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" ")

")"))]

[boi (some -v (hash -ref visited -vs vs))])

A.14 The NoCircularity Misinterpreter

--- systems/smol -interpreters/Definitional.rkt 2025-02-08

11:00:46

+++ systems/smol -interpreters/misinterpreters/NoCircularity.rkt

2025-02-08 11:00:46

@@ -3,6 +3,7 @@

(require smol -interpreters/syntax)

(require

(typed -in racket

+ [ormap : (('a -> Boolean) (Listof 'a) -> Boolean)]

[append -map : (('a -> (Listof 'b)) (Listof 'a) -> (Listof 'b

))]

[hash -values : ((Hashof 'a 'b) -> (Listof 'b))]

[count : (('a -> Boolean) (Listof 'a) -> Number)]

@@ -113,6 +114,17 @@

(and (f v (first vs))

(rec (first vs) (rest vs)))])))

(rec (first vs) (rest vs)))]))

+

+(define (checked -vector -set! the-v i e)

+ (local [(define (occur? x)

+ (type -case Value x
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+ [(vector v)

+ (or (eq? v the-v)

+ (ormap occur? (vector ->list v)))]

+ [else #f]))]

+ (if (occur? e)

+ (error 'smol "vector can't contain itself")

+ (vector -set! the-v i e))))

(define (delta p vs)

(type -case PrimitiveOperator p

@@ -149,7 +161,7 @@

(define vvec (as-vector v1))

(define vnum (as-numeric v2)))

(begin

- (vector -set! vvec vnum v3)

+ (checked -vector -set! vvec vnum v3)

(unit)))]

[(PairNew)

(local ((define -values (v1 v2) (as-two vs)))

@@ -163,12 +175,12 @@

[(PairSetLft)

(local ((define -values (vpr vel) (as-two vs)))

(begin

- (vector -set! (as-pair vpr) 0 vel)

+ (checked -vector -set! (as-pair vpr) 0 vel)

(unit)))]

[(PairSetRht)
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(local ((define -values (vpr vel) (as-two vs)))

(begin

- (vector -set! (as-pair vpr) 1 vel)

+ (checked -vector -set! (as-pair vpr) 1 vel)

(unit)))]))

(define (make -env env xs)
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APPENDIX B

SMOL QUIZZES

This appendix presents the SMoL Quizzes instruments:

1. Appendix B.1 presents the content of the first quiz, smol/fun;

2. Appendix B.2 presents the content of the second quiz, smol/state;

3. Appendix B.3 presents the content of the third quiz, smol/hof;

B.1 The smol/fun Quiz

This quiz keeps ‘arithmetic operators’ and ‘0 as condition’ at the beginning and random-

izes the order of all remaining questions.
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smol/fun

How to read this file?
(a smol/fun program)

● Correct answer
● Other answer 1
● Other answer 2

Why the correct answer is correct

arithmetic operators
(deffun (f o) (o 1 1))
(f +)

● Error
● Syntax error
● 2

The correct answer is Error because smol/fun doesn’t allow programmers to pass functions as
arguments. 2 would have been correct if smol/fun permits higher-order functions, i.e. functions
that consume or produce functions, such as f.

0 as condition
(if 0 #t #f)

● #t
● #f

In smol/fun, every value other than #f is considered “true”. You might find this confusing if you
are familiar with Python or C.

redeclare var using defvar
(defvar x 0)
(defvar y x)



(defvar x 2)
x
y

● Error
● 2; 0
● 0; 0
● Nothing is printed

You can’t redeclare x in the same scope level (the global, in this case).

expose local defvar
(defvar x 42)
(deffun (create)
(defvar y 42)
y)

(create)
(equal? x y)

● Error
● 42; #t

The variable y is declared locally. You can’t use it outside of the create function.

pair?
(pair? (pair 1 2))
(pair? (ivec 1 2))
(pair? '#(1 2))
(pair? '(1 2))

● #t #t #t #f
● #t #f #t #f
● #t #t #t #t

In smol, pair is a special-case of ivec.  The last vector-like expression is Racket’s way of writing
list 1, 2.



let* and let
(let* ([v 1]

[w (+ v 2)]
[y (* w w)])

(let ([v 3]
[y (* v w)])

y))

● 3
● 9
● 27

When the inner y is created with (* v w), the v is the outer v.

defvar and let
(defvar x 3)
(defvar y (let ([y 6] [x 5]) x))

(* x y)

● 15
● 25
● 9

The global y is defined to be equal to the local x, which is 5.

fun-id equals to arg-id
(deffun (f f) f)
(f 5)

● 5
● Error

The parameter f shadows the function name f.



scoping rule of let
(let ([x 4]

[y (+ x 10)])
y)

● Error
● 14

The let expression binds x and y simultaneously, so y cannot see x. If you replace let with let*,
the program will produce 14.

the right component of ivec
(right (ivec 1 2 3))

● Error
● 2

The documentation of `right` says that the input must be of type Pair, and an ivec of size 3 can't
be a Pair. If the smol/fun does not check that its parameter is a pair, however, this will return 2.

identifiers
(defvar x 5)

(deffun (reassign var_name new_val)
(defvar var_name new_val)
(pair var_name x))

(reassign x 6)
x

● '#(6 5) 5
● '#(6 6) 5
● '#(6 6) 6
● Error
● Nothing is printed

The inner defvar declare var_name locally, which shadows the parameter var_name. Neither
var_name has anything to do with x, which is defined globally.



defvar, deffun, and let
(defvar a 1)
(deffun (what-is-a) a)

(let ([a 2])
(ivec
(what-is-a)
a))

● '#(1 2)
● '#(2 2)

The function what-is-a is defined globally. When it uses the variable a, it looks up in the global
scope.

syntax pitfall
(deffun (f a b) a + b)
(f 5 10)

● 10
● 15
● 5
● Error

It is easy to forget smol/fun uses prefix parenthetical syntax. To do the right thing, the deffun
should be (deffun (f a b) (+ a b)). This program produces 10 because when smol/fun
computes the value of (f 5 10), it computes a, and computes +, and finally computes b and
returns b’s value, which is 10.



B.2 The smol/state Quiz

This quiz randomizes the order of all questions.
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smol/state

How to read this file?
(a smol program)

● Correct answer
● Other answer 1
● Other answer 2

Why the correct answer is correct

circularity
(defvar x (mvec 2 3))
(set-right! x x)
(set-left! x x)
x

● x='#(x x) or something similar. Both (left x) and (right x) are x itself.
● '#(#(2 #(2 3)) #(2 3))
● Error

set-right! makes x a pair whose left is 2 and whose right is the pair itself. set-left! makes a pair
whose both components are x itself.

eval order
(defvar x 0)
(ivec x (begin (set! x 1) x) x)

● '#(0 1 1)
● '#(0 1 0)
● '#(1 1 1)

When computing the value of `(ivec …)`, we first compute x, which is 0 at that moment, then
`(begin …)`, which mutates x to 1 and returns 1, and finally the last x, which is now 1.



mvec as arg
(defvar x (mvec 1 2))
(deffun (f x)
(vset! x 0 0))

(f x)
x

● '#(0 2)
● '#(1 2)

f was given the same mutable vector. When two mutable values are the same, updates to one
are visible in the other.

var as arg
(defvar x 12)
(deffun (f x)
(set! x 0))

(f x)
x

● 12
● 0

The global variable x and the parameter x are different variables. Changing the binding of the
parameter x will not change the binding of the global x.

seemingly aliasing a var
(defvar x 5)
(deffun (set1 x y)
(set! x y))

(deffun (set2 a y)
(set! x y))

(set1 x 6)
x
(set2 x 7)
x

● 5; 7



● 6; 7
● 5; 5

Similar to the last question (var as arg), calling the function set1 will not change the global x.
The other function (set2), however, is using the global x.

mutable var in vec
(defvar x 3)
(defvar v (mvec 1 2 x))
(set! x 4)
v
x

● '#(1 2 3); 4
● '#(1 2 4); 4

The mutable vector stores the value of x (i.e. 3) rather than the binding (i.e. the information that
x is mapped to 3). So the later set! doesn’t affect v.

aliasing mvec in mvec
(defvar v (mvec 1 2 3 4))
(defvar vv (mvec v v))
(vset! (vref vv 1) 0 100)
vv

● '#(#(100 2 3 4) #(100 2 3 4))
● Error
● '#(#(1 2 3 4) #(1 2 3 4))
● '#(#(1 2 3 4) #(100 2 3 4))

Both components of vv are identical to v. That is, the left of vv, the right of vv, and v are the
same vector.

vset! in let
(defvar x (mvec 123))
(let ([y x])
(vset! y 0 10))

x



● '#(10)
● '#(123)

y and x are bound to the same vector.

set! in let
(defvar x 123)
(let ([y x])
(set! y 10))

x

● 123
● 10

y and x are different variables. The set! re-binds y to 10. This won’t affect x.

seemingly aliasing a var again
(defvar x 10)
(deffun (f y z)
(set! x z)
y)

(f x 20)
x

● 10; 20
● 20; 20

At first, x is bound to 10. When f is called, y is bound to the value of x, which is 10, and z is
bound to the value of 20, which is 20 itself. Then f re-binds x to the value of z, which is 20. After
that f returns the value of y, which is 10. Finally, the program computes the value of x, which is
now 20 because f has rebound x.



B.3 The smol/hof Quiz

This quiz organizes questions into question groups. The order of groups is randomized.

Questions within the same group are presented in a row but in a randomized order. Questions

named as ‘fun and state i/4‘ are in the same group. Questions named as ‘eq? fun fun i/3‘

are in another group. Each one of the remaining questions has its own group.
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smol/hof

How to read this file?
(a smol program)

● Correct answer
● Other answer 1
● Other answer 2

Why the correct answer is correct

fun returns lambda
(deffun (f x)
(lambda (y) (+ x y)))

((f 2) 1)

● 3
● Error

The lambda expression is created in the scope of x, so it can use x.

filter gt
(filter (lambda (n) (> 3 n)) '(1 2 3 4 5))

● '(1 2)
● '(4 5)

This program keeps numbers that 3 is greater than (not that is greater than 3).

fun and state 1/4
(defvar x 1)
(defvar f
(lambda (y)
(+ x y)))

(set! x 2)



(f x)

● 4
● 3

Every time f is called, it looks up the value of x again.

fun and state 2/4
(defvar x 1)
(deffun (f y)
(+ x y))

(set! x 2)
(f x)

● 4
● 3

Same as fun and state 1/4

fun and state 3/4
(defvar x 1)
(defvar f
(lambda (y)

(+ x y)))
(let ([x 2])
(f x))

● 3
● 4

The x in the definition of f is the global x, which is a variable different from the x in let.

fun and state 4/4
(defvar x 1)
(deffun (f y)
(+ x y))

(let ([x 2])
(f x))



● 3
● 4

Same as fun and state 3/4.

eval order
(deffun (f x) (+ x 1))
(deffun (new-f x) (* x x))

(f (begin
(set! f new-f)
10))

● 11
● 100
● Error

Function application first computes the value first computes the value of the operator, then the
values of operands (i.e. actual parameters) from left to right. So when the set! happened, f had
been resolved to its initial value.

counter
(deffun (make-counter)
(let ([count 0])
(lambda ()
(begin
(set! count (+ count 1))
count))))

(defvar f (make-counter))
(defvar g (make-counter))

(f)
(g)
(f)
(f)
(g)

● 1; 1; 2; 3; 2



● 1; 1; 1; 1; 1
● 1; 1; 2; 3; 4

Every time the function make-counter is called, it returns a function that returns 1 when called
the first time, 2 the second time, etc. Each (lambda () …) has its own local variable count.

hof + set!
(defvar y 3)
(+ ((lambda (x) (set! y 0) (+ x y)) 1)

y)

● 1
● 7
● 4
● Error

Because function applications compute their parameters from left to right, set! happened before
resolving the last y.

filter
(defvar l (list (ivec) (ivec 1) (ivec 2 3)))
(filter (lambda (x) (vlen x)) l)

● '(#() #(1) #(2 3))
● ‘(0 1 2)
● '(#(1) #(2 3))
● Error

Recall that all values other than #f are considered truthy. The filter is effectively creating a copy
of l.

eq? fun fun 1/3
(eq? (λ (x) (+ x x))

(λ (x) (+ x x)))

● #f
● #t

Lambda expressions are similar to mvec in the sense that everytime we compute the value of a
lambda expression, a new value is created. eq? returns true only when the two values are the
same (i.e. identical).



eq? fun fun 2/3
(deffun (f x) (+ x x))
(deffun (g x) (+ x x))
(eq? f g)

● #f
● #t

(deffun (f x) …) can be viewed as (defvar f (lambda (x) …)).

eq? fun fun 3/3
(deffun (f x) (+ x x))
(deffun (g) f)
(eq? f (g))

● #t
● #f

The function value associated with f is computed exactly once when f is defined. (g) is just
looking up the value of f.

equal? fun fun
(deffun (f) (lambda () 1))
(equal? (f) (f))

● #f
● #t

Two function values are equal if and only if they are eq. f computes (lambda () …) everytime it is
called. So (f) is not equal to another (f).



APPENDIX C

SMOL TUTOR

This chapter presents the learning objectives for each tutorial in the SMoL Tutor (Ap-

pendix C.1) and evaluates these objectives as Rules of Program Behavior (RPBs) (Ap-

pendix C.2).

C.1 Learning Objectives

Each section lists the learning objectives of the corresponding tutorial. When a tutorial

includes multiple learning objectives, they are placed in different subsections.

C.1.1 def1

Introducing “Blocks”

We have two kinds of places where a definition might happen: the top-level block and

function bodies (which are also blocks). A block is a sequence of definitions and expressions.

Blocks form a tree-like structure in a program. For example, we have four blocks in the

following program:
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(defvar n 42)

(deffun (f x)

(defvar y 1)

(+ x y))

(deffun (g)

(deffun (h m)

(* 2 m))

(f (h 3)))

(g)

The blocks are:

• the top-level block, where the definitions of n, f, and g appear

• the body of f, where the definition of y appears, which is a sub-block of the top-level

block

• the body of g, where the definition of h appears, which is also a sub-block of the

top-level block, and

• the body of h, where no local definition appears, which is a sub-block of the body of g

Evaluating Undefined Variables

It is an error to evaluate an undefined variable.

C.1.2 def2

Lexical Scope

Variable references follow the hierarchical structure of blocks.

If the variable is defined in the current block, we use that declaration.
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Otherwise, we look up the block in which the current block appears, and so on recursively.

(Specifically, if the current block is a function body, the next block will be the block in which

the function definition is; if the current block is the top-level block, the next block will be

the primordial block.)

If the current block is already the primordial block and we still haven’t found a corre-

sponding declaration, the variable reference errors.

The primordial block is a non-visible block enclosing the top-level block. This block

defines values and functions that are provided by the language itself.

Introducing “Scope”

The scope of a variable is the region of a program where we can refer to the variable.

Technically, it includes the block in which the variable is defined (including sub-blocks)

except the sub-blocks where the same name is re-defined. When the exception happens, that

is, when the same name is defined in a sub-block, we say that the variable in the sub-block

shadows the variable in the outer block.

We say a variable reference (e.g., “the x in (+ x 1)”) is in the scope of a declaration

(e.g., “the x in (defvar x 23)”) if and only if the former refers to the latter.

C.1.3 def3

Variables are bound to values. Specifically, every variable definition evaluates the expres-

sion immediately and binds the variable to the value, even if the variable is not used later

in the program; every function call evaluates the actual parameters immediately and binds

the values to formal parameters, even if the formal parameter is not used in the function.

Every block evaluates its definitions and expressions in reading order (i.e., top-to-bottom

and left-to-right).
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C.1.4 vectors1

(This section defines no learning objects.)

C.1.5 vectors2

vector aliasing

A vector can be referred to by more than one variable and even by other vectors (including

itself). Referring to a vector does not create a copy of the vector; rather, they share the

same vector. Specifically

1. Binding a vector to a new variable does not create a copy of that vector.

2. Vectors that are passed to a function in a function call do not get copied.

3. Creating new vectors that refer to existing ones does not create new copies of the

existing vectors.

The references share the same vector. That is, vectors can be aliased.

The heap

In SMoL, each vector has its own unique heap address (e.g., @100 and @200). The

mapping from addresses to vectors is called the heap.

(Note: we use @ddd (e.g., verb|@123|, @200, and @100) to represent heap addresses. Heap

addresses are random. The numbers don’t mean anything.)

The heap and (variable) bindings

Creating a vector does not inherently create a binding.

Creating a binding does not necessarily alter the heap.
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C.1.6 vectors3

(This section defines no learning objects.)

C.1.7 mutvars1

Variable assignments change only the mutated variables. That is, variables are not

aliased.

(Note: some programming languages (e.g., C++ and Rust) allow variables to be aliased.

However, even in those languages, variables are not aliased by default.)

C.1.8 mutvars2

Mutable variables

Variable assignments mutate existing bindings and do not create new bindings.

Functions refer to the latest values of variables defined outside their definitions. That

is, functions do not remember the values of those variables from when the functions were

defined.

Environments

Environments (rather than blocks) bind variables to values.

Similar to vectors, environments are created as programs run.

Environments are created from blocks. They form a tree-like structure, respecting the

tree-like structure of their corresponding blocks. So, we have a primordial environment, a

top-level environment, and environments created from function bodies.

Every function call creates a new environment. This is very different from the block

perspective: every function corresponds to exactly one block, its body.
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C.1.9 lambda1

Functions are (also) first-class citizens of the value world. Specifically,

• Variables (notably parameters) can be bound to functions,

• Functions can return functions, and

• Vectors can refer to functions.

C.1.10 lambda2

Functions remember the environment in which they are defined. That is, function bodies

are “enclosed” by the environments in which the function values are created. So, function

values are called closures.

C.1.11 lambda3

Introducing Lambda Expressions

Lambda expressions are expressions that create functions.

The following program illustrates how to create a function without giving it a name and

then call it immediately.

((lambda (n)

(+ n 1))

2)

The function is created by a lambda expression. This function increases it parameter by

one.

(lambda (n)

(+ n 1))
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Lambdas

(deffun (f x y z) body)

is a “shorthand” for

(defvar f (lambda (x y z) body))

C.2 Evaluating the Learning Objectives as Rules of Program

Behavior

This section evaluates the SMoL Tutor’s learning objectives (Appendix C) and SMoL

Characteristics against the 16 evaluation criteria proposed by Duran, Sorva, and Seppälä

[21].

Because the learning objectives are essentially a refined version of the SMoL Character-

istics (Section 1.1), the discussion applies to both unless stated otherwise.

Cultural Fit An unusual aspect of my rules is that they are not designed for learners with

little or no programming background. Instead, they assume users already possess basic

programming knowledge, including familiarity with concepts like vectors, mutation, and

higher-order functions.

Accuracy Because my rules are designed to be multilingual, they cannot be 100% accurate

due to variations across languages. However, each rule is correct for many languages. Some

learning objectives intentionally sacrifice accuracy for pedagogical simplicity. For example,

in the def tutorials, recursive lexical scope lookup is explained directly in terms of blocks,

rather than environments. Later, in the mutvars module, environments are introduced,

and the lexical scope rules are revisited. Without mutation, introducing environments earlier

would be unjustified, making this staged introduction necessary.
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Coverage My rules cover mutable variables, mutable vectors, first-class functions, and their

interactions.

Simplicity The notion of simplicity in [21] concerns the number of concepts and the com-

plexity of their dependencies. Evaluating SMoL Characteristics by this standard is less

meaningful: they are simple but perhaps overly so for detailed reasoning. The learning

objectives, however, are explicitly designed with simplicity in mind. Early tutorials (def)

intentionally omit mutation; concepts like the heap and heap addresses are introduced only

when needed (e.g., after introducing mutable vectors), and environments are introduced only

after mutable variables are covered.

Consistency The consistency of my rules is compromised whenever a documented language

behavior diverges from the rules. (If undocumented, it instead affects accuracy.) My rules

explicitly note assumptions such as eager and sequential evaluation within a single thread,

and caution that aliasing behavior differs between mutable data structures and mutable

variables.

Granularity The learning objectives are intended to be fine-grained enough for learners

to mechanically evaluate any program covered by SMoL. The SMoL Characteristics are

somewhat coarser.

Abstraction The learning objectives are abstract enough to avoid unnecessary implementa-

tion details. Similarly, the SMoL Characteristics are abstract enough to describe behaviors

common across many modern programming languages.

Expressibility Duran, Sorva, and Seppälä [21] defines expressibility as “how feasible it is

to construct a student-facing form of the RPBs suitable for the target audience”. By this

measure, the learning objectives are highly expressible: the SMoL Tutor presents them
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directly to students. Although I believe this presentation is suitable, I acknowledge that

evaluating this point objectively is difficult.

Notational Fit Following [21], notational fit refers to how well the rules are phrased in

terms of syntactic constructs. Explaining scope in terms of blocks achieves high notational

fit but compromises accuracy, as discussed earlier. Conversely, introducing heaps and heap

addresses reduces notational fit but is necessary to explain the behavior of mutable data

structures correctly.

Generality The rules are designed to be highly general, remaining largely consistent across

a wide range of programming languages.

Transferability This criterion seems intended for RPBs that target a single language, and

is likely not applicable to my rules.

Sensitivity to Conceptions Duran, Sorva, and Seppälä [21] describe this criterion as ad-

dressing how RPBs account for learners’ prior knowledge, common misconceptions, and diffi-

cult content. My rules assume basic programming experience but no system-level knowledge.

Although the rules themselves were not designed specifically around misconceptions, the de-

velopment of refutation texts consistently drew contrasts between misconceptions and the

learning objectives. The rules also attend to difficult concepts by sequencing topics carefully:

first-class functions, a difficult topic, are introduced only after students have a firmer grasp

of earlier material.

Other Criteria It is unclear how to evaluate my rules against the criteria of Wieldiness,

Assessability, Implementability, and Clarity of Writing.
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